JEE Advance - Mathematics (2024 - Paper 1 Online - No. 8)
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{1 / 6} \sqrt{6}}$. If $x, y \in \mathbb{R}$ are such that
$$ \begin{aligned} & 3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { and } \\ & 2 x-y=\log _b(\sqrt{1080}), \end{aligned} $$
then $4 x+5 y$ is equal to __________.
Explanation
Given:
$ a = 3\sqrt{2} \Rightarrow a^2 = 18 $
Simplification of $\log_a(18)^{\frac{5}{4}}$
Since $a^2 = 18$, we have:
$ \log_a(18) = \log_a(a^2) = 2 $
Therefore:
$ \log_a(18)^{\frac{5}{4}} = \frac{5}{4} \log_a(18) = \frac{5}{4} \cdot 2 = \frac{5}{2} $
So the equation becomes:
$ 3x + 2y = \frac{5}{2} $
Simplification of $\log_b(\sqrt{1080})$
Given:
$ 1080 = 2^3 \cdot 3^3 \cdot 5 = 6^3 \cdot 5 $
$ b = \frac{1}{5^{1/6} \sqrt{6}} $
$ \Rightarrow \frac{1}{b} = 5^{1/6} \sqrt{6} $
$ \Rightarrow 1080^{1/6} = 5^{1/6} \cdot 6^{1/2} = \frac{1}{b} $
Taking the square root of both sides:
$ \sqrt{1080} = \frac{1}{b^3} $
Thus:
$ \log_b(\sqrt{1080}) = \log_b\left(\frac{1}{b^3}\right) = \log_b(b^{-3}) = -3 $
So the second equation becomes:
$ 2x - y = -3 $
Solving the System of Equations
Now we have:
$ 3x + 2y = \frac{5}{2} $
$ 2x - y = -3 $
Multiply the second equation by 2:
$ 4x - 2y = -6 $
Add this to the first equation:
$ 3x + 2y + 4x - 2y = \frac{5}{2} - 6 $
$ 7x = \frac{5}{2} - 6 $
$ 7x = \frac{5}{2} - \frac{12}{2} $
$ 7x = \frac{5 - 12}{2} $
$ 7x = -\frac{7}{2} $
$ x = -\frac{1}{2} $
Substitute $x$ back into $2x - y = -3$:
$ 2\left(-\frac{1}{2}\right) - y = -3 $
$ -1 - y = -3 $
$ -y = -2 $
$ y = 2 $
Finding $4x + 5y$
$ 4x + 5y = 4 \left(-\frac{1}{2}\right) + 5 \cdot 2 $
$ = -2 + 10 $
$ = 8 $
Thus, the value of $4x + 5y$ is $\boxed{8}$.
Comments (0)
