JEE Advance - Mathematics (2024 - Paper 1 Online - No. 3)
Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then
$$ \left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x) $$
is equal to :
Explanation
Given the information, let's start by analyzing the trigonometric relationships involving $\cot x = \frac{-5}{\sqrt{11}}$ where $\frac{\pi}{2} < x < \pi$.
We know that $\cot x$ is the reciprocal of $\tan x$. Hence,
$$ \cot x = \frac{\cos x}{\sin x} = \frac{-5}{\sqrt{11}} $$
From the above, it follows that:
$$ \cos x = -5k \text{ and } \sin x = \sqrt{11}k $$
for some constant $k$. Using the Pythagorean identity:
$$ \cos^2 x + \sin^2 x = 1 $$
Let’s substitute the values of $\cos x$ and $\sin x$ into this identity:
$$ (-5k)^2 + (\sqrt{11}k)^2 = 1 $$
$$ 25k^2 + 11k^2 = 1 $$
$$ 36k^2 = 1 $$
$$ k^2 = \frac{1}{36} $$
$$ k = \frac{1}{6} \text{ or } k = -\frac{1}{6} $$
Therefore, we have two sets of values:
$$ \cos x = -\frac{5}{6} \text{ and } \sin x = \frac{\sqrt{11}}{6} $$
Given that $x$ is in the interval $\left(\frac{\pi}{2}, \pi\right)$, where sine is positive and cosine is negative, we take:
$$ \cos x = -\frac{5}{6},\ \sin x = \frac{\sqrt{11}}{6} $$
Now consider the expression:
$$\left(\sin \frac{11 x}{2}\right)(\sin 6 x - \cos 6 x) + \left(\cos \frac{11 x}{2}\right)(\sin 6 x + \cos 6 x) $$
To solve this, first find $\frac{11x}{2}$ which lies in the interval $\left(\frac{11\pi}{4}, \frac{11\pi}{2}\right)$. Next, we simplify each term using sum-to-product identities:
Notice:
$$ \sin 6x - \cos 6x = \sqrt{2} \sin \left( 6x - \frac{\pi}{4} \right) $$
$$ \sin 6x + \cos 6x = \sqrt{2} \cos \left( 6x - \frac{\pi}{4} \right) $$
Using these, the given expression becomes:
$$ \left(\sin \frac{11x}{2}\right) \sqrt{2} \sin \left(6x - \frac{\pi}{4} \right) + \left(\cos \frac{11x}{2}\right) \sqrt{2} \cos \left(6x - \frac{\pi}{4} \right) $$
This further simplifies using the angle sum identities:
$$ = \sqrt{2} \left(\sin \frac{11x}{2} \sin \left(6x - \frac{\pi}{4}\right) + \cos \frac{11x}{2} \cos \left(6x - \frac{\pi}{4}\right)\right) $$
Utilizing the cosine of the difference identity:
$$ \sin A \sin B + \cos A \cos B = \cos(A - B) $$
Substitute $A = \frac{11x}{2}$ and $B = 6x - \frac{\pi}{4}$:
$$ \cos \left(\frac{11x}{2} - \left(6x - \frac{\pi}{4}\right)\right) = \cos \left(\frac{11x}{2} - 6x + \frac{\pi}{4}\right) = \cos \left( - \frac{x}{2} + \frac{\pi}{4} \right) = \cos \left(\frac{\pi}{4} - \frac{x}{2}\right) $$
Using the values of trigonometric functions:
$$ \cos \left(\frac{\pi}{4} - \frac{x}{2}\right) = \frac{\sqrt{11}+1}{2\sqrt{3}} $$
Thus, the correct option is:
Option B
$$ \frac{\sqrt{11}+1}{2 \sqrt{3}} $$
Comments (0)
