JEE Advance - Mathematics (2024 - Paper 1 Online - No. 15)
Let the straight line $y=2 x$ touch a circle with center $(0, \alpha), \alpha>0$, and radius $r$ at a point $A_1$. Let $B_1$ be the point on the circle such that the line segment $A_1 B_1$ is a diameter of the circle. Let $\alpha+r=5+\sqrt{5}$.
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) $\alpha$ equals | (1) $(-2, 4)$ |
(Q) $r$ equals | (2) $\sqrt{5}$ |
(R) $A_1$ equals | (3) $(-2, 6)$ |
(S) $B_1$ equals | (4) $5$ |
(5) $(2, 4)$ |
The correct option is
Explanation
Consider centre as $$\mathrm{P}(0, \alpha), \alpha>0$$
$$\left|\frac{2(0)-\alpha}{\sqrt{5}}\right|=\mathrm{r}$$
$$\begin{aligned} & |-\alpha|=\sqrt{5} r \\ & \alpha=\sqrt{5} r \\ & \therefore \alpha+r=5+\sqrt{5} \\ & \sqrt{5} r+r=\sqrt{5}(\sqrt{5}+1) \\ & r=\sqrt{5}, \alpha=5 \\ & \therefore P(0,5) \end{aligned}$$
Foot of perpendicular from $$P$$ to line $$2 x-y=0$$
$$\begin{aligned} & \frac{x-0}{2}=\frac{y-5}{-1}=\frac{-(2(0)-5)}{5}=1 \\ & x=2, y=4 \quad A_1(2,4) \end{aligned}$$
Let $$\mathrm{B}(\mathrm{p}, \mathrm{q}) \quad \therefore \frac{\mathrm{p}+2}{2}=0, \frac{\mathrm{q}+4}{2}=5$$
$$\therefore \mathrm{p}=-2, \mathrm{q}=6 \quad B(-2,6)$$
Comments (0)
