JEE Advance - Mathematics (2023 - Paper 2 Online - No. 3)
For any $y \in \mathbb{R}$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation
$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
$2 \sqrt{3}-3$
$3-2 \sqrt{3}$
$4 \sqrt{3}-6$
$6-4 \sqrt{3}$
Explanation
Concept :
$$ \cot ^{-1} x=\left\{\begin{aligned} \pi+\tan ^{-1} \frac{1}{x}; & x<0 \\ \tan ^{-1} \frac{1}{x} & ; x>0 \end{aligned}\right. $$
Solution : Given, $0 < |y| < 3$
$$ \Rightarrow $$ $$ y \in(-3,3)- $$ {0}
$$9 - {y^2}$$ is always positive when $$ y \in(-3,3)- $$ {0}
And $6y$ is positive when $$ y \in(0,3) $$
And $6y$ is negative when $$ y \in(-3,0) $$
$$ \therefore $$ In overall, $$ \frac{6 y}{9-y^2} > 0 $$ when $$ y \in(0,3) $$
And $$ \frac{6 y}{9-y^2} < 0 $$ when $$ y \in(-3,0) $$
Case - 1 :
When $-3 < y < 0$
$$ \begin{aligned} & \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\pi+\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{-\pi}{3} \\\\ & \Rightarrow \frac{6 y}{9-y^2}=\frac{-1}{\sqrt{3}} \\\\ & \Rightarrow y^2-6 \sqrt{3} y-9=0 \\\\ & \Rightarrow y^2-6 \sqrt{3} y-9=0 \end{aligned} $$
$$ \begin{aligned} & \Rightarrow y=\frac{6 \sqrt{3} \pm \sqrt{108+36}}{2}=\frac{6 \sqrt{3} \pm 12}{2}=3 \sqrt{3} \pm 6 \\\\ & \text { as } y \in(-3.0) \therefore y=3 \sqrt{3}-6 \end{aligned} $$
Case-2 : When $0 < y < 3$
$$ \begin{aligned} & \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow \frac{6 y}{9-y^2}=\sqrt{3} \end{aligned} $$
$$ \begin{aligned} & \Rightarrow 6 y=9 \sqrt{3}-\sqrt{3} y^2 \\\\ & \Rightarrow \sqrt{3} y^2+6 y-9 \sqrt{3}=0 \\\\ & \Rightarrow \sqrt{3} y^2+9 y-3 y-9 \sqrt{3}=0 \\\\ & \Rightarrow \sqrt{3} y(y+3 \sqrt{3})-3(y+3 \sqrt{3})=0 \\\\ & \Rightarrow(y+3 \sqrt{3})-(\sqrt{3} y-3)=0 \end{aligned} $$
$$ y \neq-3 \sqrt{3} \quad \therefore y=\sqrt{3} \text { as } y \in(0,3) $$
$$ \therefore \text { Sum of solutions }=\sqrt{3}+(3 \sqrt{3}-6)=4 \sqrt{3}-6 $$
$$ \cot ^{-1} x=\left\{\begin{aligned} \pi+\tan ^{-1} \frac{1}{x}; & x<0 \\ \tan ^{-1} \frac{1}{x} & ; x>0 \end{aligned}\right. $$
Solution : Given, $0 < |y| < 3$
$$ \Rightarrow $$ $$ y \in(-3,3)- $$ {0}
$$9 - {y^2}$$ is always positive when $$ y \in(-3,3)- $$ {0}
And $6y$ is positive when $$ y \in(0,3) $$
And $6y$ is negative when $$ y \in(-3,0) $$
$$ \therefore $$ In overall, $$ \frac{6 y}{9-y^2} > 0 $$ when $$ y \in(0,3) $$
And $$ \frac{6 y}{9-y^2} < 0 $$ when $$ y \in(-3,0) $$
Case - 1 :
When $-3 < y < 0$
$$ \begin{aligned} & \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\pi+\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{-\pi}{3} \\\\ & \Rightarrow \frac{6 y}{9-y^2}=\frac{-1}{\sqrt{3}} \\\\ & \Rightarrow y^2-6 \sqrt{3} y-9=0 \\\\ & \Rightarrow y^2-6 \sqrt{3} y-9=0 \end{aligned} $$
$$ \begin{aligned} & \Rightarrow y=\frac{6 \sqrt{3} \pm \sqrt{108+36}}{2}=\frac{6 \sqrt{3} \pm 12}{2}=3 \sqrt{3} \pm 6 \\\\ & \text { as } y \in(-3.0) \therefore y=3 \sqrt{3}-6 \end{aligned} $$
Case-2 : When $0 < y < 3$
$$ \begin{aligned} & \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^2}\right)=\frac{2 \pi}{3} \\\\ & \Rightarrow \frac{6 y}{9-y^2}=\sqrt{3} \end{aligned} $$
$$ \begin{aligned} & \Rightarrow 6 y=9 \sqrt{3}-\sqrt{3} y^2 \\\\ & \Rightarrow \sqrt{3} y^2+6 y-9 \sqrt{3}=0 \\\\ & \Rightarrow \sqrt{3} y^2+9 y-3 y-9 \sqrt{3}=0 \\\\ & \Rightarrow \sqrt{3} y(y+3 \sqrt{3})-3(y+3 \sqrt{3})=0 \\\\ & \Rightarrow(y+3 \sqrt{3})-(\sqrt{3} y-3)=0 \end{aligned} $$
$$ y \neq-3 \sqrt{3} \quad \therefore y=\sqrt{3} \text { as } y \in(0,3) $$
$$ \therefore \text { Sum of solutions }=\sqrt{3}+(3 \sqrt{3}-6)=4 \sqrt{3}-6 $$
Comments (0)
