JEE Advance - Mathematics (2023 - Paper 2 Online - No. 17)

Consider the $6 \times 6$ square in the figure. Let $A_1, A_2, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that $A_i$ and $A_j$ are friends if they are adjacent along a row or along a column. Assume that each point $A_i$ has an equal chance of being chosen.

Consider the $6 \times 6$ square in the figure. Let $A_1, A_2, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that $A_i$ and $A_j$ are friends if they are adjacent along a row or along a column. Assume that each point $A_i$ has an equal chance of being chosen.

Consider the $6 \times 6$ square in the figure. Let $A_1, A_2, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that $A_i$ and $A_j$ are friends if they are adjacent along a row or along a column. Assume that each point $A_i$ has an equal chance of being chosen.

Two distinct points are chosen randomly out of the points $A_1, A_2, \ldots, A_{49}$. Let $p$ be the probability that they are friends. Then the value of $7 p$ is :
Answer
0.50

Explanation

Total number of ways of selecting 2 persons $={ }^{49} \mathrm{C}_2$

Number of ways in which 2 friends are selected $=6 \times 7 \times 2=84$

$$7 \mathrm{P}=\frac{84 \times 2}{49 \times 48} \times 7=\frac{1}{2}$$

Comments (0)

Advertisement