JEE Advance - Mathematics (2023 - Paper 2 Online - No. 15)
$$
\text { Then the inradius of the triangle } A B C \text { is }
$$ :
Answer
0.25
Explanation
In radius $ r=\frac{\Delta}{S}=\left[\frac{a}{2 R(\sin A+\sin B+\sin C)}\right)$
$$ \begin{aligned} r & =\frac{a}{\sin \left(\frac{\pi}{2}-2 C\right) \sin \left(\frac{\pi}{2}+C\right)+\sin C} \\\\ & =\frac{a}{\cos 2 C+\cos C+\sin C} \\\\ & =\frac{a}{\cos 2 C+\sqrt{1+\sin 2 C}} \\\\ & =\frac{\frac{3 \sqrt{7}}{16}}{\sqrt{\frac{7}{4}}+\sqrt{\frac{7}{2}}}=\frac{1}{4} \\\\ \Rightarrow r & =\frac{1}{4}=0.25 \\\\ \Rightarrow r & =0.25 \end{aligned} $$
$$ \begin{aligned} r & =\frac{a}{\sin \left(\frac{\pi}{2}-2 C\right) \sin \left(\frac{\pi}{2}+C\right)+\sin C} \\\\ & =\frac{a}{\cos 2 C+\cos C+\sin C} \\\\ & =\frac{a}{\cos 2 C+\sqrt{1+\sin 2 C}} \\\\ & =\frac{\frac{3 \sqrt{7}}{16}}{\sqrt{\frac{7}{4}}+\sqrt{\frac{7}{2}}}=\frac{1}{4} \\\\ \Rightarrow r & =\frac{1}{4}=0.25 \\\\ \Rightarrow r & =0.25 \end{aligned} $$
Comments (0)
