JEE Advance - Mathematics (2022 - Paper 2 Online - No. 3)
$$ \int_{1}^{2} \log _{2}\left(x^{3}+1\right) d x+\int_{1}^{\log _{2} 9}\left(2^{x}-1\right)^{\frac{1}{3}} d x $$
is ___________.
Explanation
Let $$I = \int_1^2 {{{\log }_2}({x^3} + 1)dx + \int_1^{\log _2^9} {{{({2^x} - 1)}^{{1 \over 3}}}dx} } $$
Let $${I_1} = \int_1^2 {{{\log }_2}({x^3} + 1)dx} $$
and $${I_2} = \int_1^{\log _2^9} {{{({2^x} - 1)}^{{1 \over 3}}}dx} $$
Let $${2^x} - 1 = {y^3}$$
$$ \Rightarrow {2^x}\,.\,\log _2^2 = 3{y^2}\,.\,{{dy} \over {dx}}$$
$$ \Rightarrow dx = {{3{y^2}} \over {{2^x}}}dy$$
$$ \Rightarrow dx = {{3{y^2}dy} \over {{y^3} + 1}}$$
When $$x = 1$$ then $${y^3} = {2^1} - 1 = 1 \Rightarrow y = 1$$
When $$x = \log _2^9$$ then $${y^3} = {2^{\log _2^9}} - 1 \Rightarrow {y^3} = 8 \Rightarrow y = 2$$
$$\therefore$$ $${I_2} = \int_1^2 {y\,.\,{{3{y^2}} \over {{y^3} + 1}}dy} $$
$$ = \int_1^2 {{{3{y^3}dy} \over {{y^3} + 1}}} $$
Let $$y = x$$
$$ \Rightarrow dy = dx$$
$$\therefore$$ $${I_2} = \int_1^2 {{{3{x^3}dx} \over {{x^3} + 1}}} $$
Now, $${I_1} = \int_1^2 {{{\log }_2}({x^3} + 1)dx} $$
$$ = \left[ {{{\log }_2}({x^3} + 1)\,.\,x} \right]_1^2 - \int_1^2 {{1 \over {{x^3} + 1}}\,.\,{{3{x^2}} \over {\log _2^2}}\,.\,x\,dx} $$
$$ = \left[ {x\,.\,{{\log }_2}({x^3} + 1)} \right]_2^2 - \int_1^2 {{{3{x^3}dx} \over {{x^3} + 1}}} $$
$$\therefore$$ $$I = {I_1} + {I_2}$$
$$ = \left[ {x\,.\,{{\log }_2}({x^3} + 1)} \right]_1^2 - \int_1^2 {{{3{x^3}dx} \over {({x^3} + 1)}} + \int_1^2 {{{3{x^3}dx} \over {({x^3} + 1)}}} } $$
$$ = \left[ {x\,.\,{{\log }_2}({x^3} + 1)} \right]_1^2$$
$$ = 2\log _2^9 - 1\,.\,\log _2^2$$
$$ = 2\log _2^9 - 1$$
$$ = 4\log _2^3 - 1$$
$$ = 4 \times 1.58 - 1$$
$$ = 6.32 - 1$$
$$ = 5.32$$
$$\therefore$$ Greatest integer value of
$$I = [5.32] = 5$$
Other Method :-
Let $$f(x) = {\log _2}({x^3} + 1) = y$$
$$ \Rightarrow {x^3} + 1 = {2^y}$$
$$ \Rightarrow {x^3} = {2^y} - 1$$
$$ \Rightarrow x = {\left( {{2^y} - 1} \right)^{{1 \over 3}}}$$
$$\therefore$$ $${f^{ - 1}}(x) = {\left( {{2^x} - 1} \right)^{{1 \over 3}}}$$
And $$f(1) = \log _2^{(1 + 1)} = 1 = f(a)$$ (Assume)
$$f(2) = \log _2^{(8 + 1)} = \log _2^9 = f(b)$$
$$\therefore$$ $$I = \int_a^b {f(x)dx + \int_{f(a)}^{f(b)} {{f^{ - 1}}(x)dx} } $$
Let $${f^{ - 1}}(x) = t$$
$$ \Rightarrow x = f(t)$$
$$ \Rightarrow dx = f'(t)dt$$
When $$x = f(a)$$ then $$f(a) = f(t) \Rightarrow t = a$$
When $$x = f(b)$$ then $$f(b) = f(t) \Rightarrow t = b$$
$$\therefore$$ $$I = \int_a^b {f(t)dt + \int_a^b {t\,.\,f'(t)dt} } $$
$$ = \int_a^b {\left( {f(t) + t\,.\,f'(t)} \right)dt} $$
$$ = \left[ {t\,.\,f(t)} \right]_a^b$$
$$ = b\,.\,f(b) - a\,.\,f(a)$$
Here $$b = 2$$, $$f(b) = \log _2^9$$
and $$a = 1$$, $$f(a) = 1$$
$$\therefore$$ $$I = 2\log _2^9 - 1\,.\,1$$
$$ = 4\,.\,\log _2^3 - 1$$
$$ = 4 \times 1.58 - 1$$
$$ = 6.32 - 1$$
$$ = 5.32$$
$$\therefore$$ $$[I] = 5$$
Comments (0)
