JEE Advance - Mathematics (2022 - Paper 2 Online - No. 2)
$$ x d y-\left(y^{2}-4 y\right) d x=0 \text { for } x > 0, y(1)=2, $$
and the slope of the curve $y=y(x)$ is never zero, then the value of $10 y(\sqrt{2})$ is
Explanation
$$xdy = ({y^2} - 4y)dx = 0$$
$$ \Rightarrow xdy = ({y^2} - 4y)dx$$
$$ \Rightarrow {{dy} \over {({y^2} - 4x)}} = {{dx} \over x}$$
$$ \Rightarrow {{dy} \over {y(y - 4)}} = {{dx} \over x}$$
$$ \Rightarrow {1 \over 4} \times {{y - (y - 4)} \over {y(y - 4)}}dy = {{dx} \over x}$$
$$ \Rightarrow {1 \over 4}\left( {{1 \over {y - 4}} - {1 \over y}} \right)dy = {{dx} \over x}$$
Integrating both side, we get
$$ \Rightarrow {1 \over 4}\int {\left( {{1 \over {y - 4}} - {1 \over y}} \right)dy = \int {{{dx} \over x}} } $$
$$ \Rightarrow {1 \over 4}\left( {\ln \left| {{{y - 4} \over y}} \right|} \right) = \ln |x| + {1 \over 4}\ln C$$ (Cont.)
$$ \Rightarrow {1 \over 4}\ln \left| {{{y - 4} \over y}} \right| = \ln x + {1 \over 4}\ln C$$ [As $$x > 0$$, so $$|x| = x$$]
$$ \Rightarrow \ln \left| {{{y - 4} \over y}} \right| = 4\ln x + \ln C$$
$$ \Rightarrow \ln \left| {{{y - 4} \over y}} \right| = \ln ({x^4}C)$$
$$ \Rightarrow {{y - 4} \over y} = \, \pm \,C{x^4}$$
$$ \Rightarrow {{y - 4} \over y} = \lambda {x^4}$$ [Assume $$ \pm \,C = \lambda $$]
Given, $$y(1) = 2$$
$$\therefore$$ $${{2 - 4} \over 2} = \lambda {(1)^4}$$
$$ \Rightarrow \lambda = -1$$
$$\therefore$$ $${{y - 4} \over y} = - {x^4}$$
Now, $$y(\sqrt 2 ) = - {(\sqrt 2 )^4} = {{y - 4} \over y}$$
$$ \Rightarrow {{y - 4} \over y} = - 4$$
$$ \Rightarrow y - 4 = - 4y$$
$$ \Rightarrow 5y = 4$$
$$ \Rightarrow y = {4 \over 5}$$
$$\therefore$$ $$10y(\sqrt 2 ) = 10 \times {4 \over 5} = 8$$
Comments (0)
