JEE Advance - Mathematics (2022 - Paper 2 Online - No. 12)
Explanation
Here if we add center of circles G1, G2, G3 ....... Gn, then we get a polygon of n sides.
From figure you can see one side of polygon makes angle $$\theta$$ with the center.
$$\therefore$$ n sides make angle = n$$\theta$$
We know, $$n\theta = 2\pi $$
$$ \Rightarrow \theta = {{2\pi } \over n}$$
Here triangle OMN is an isosceles triangle. Line joining of point O and midpoint O of MN (point A) is perpendicular to line MN and perpendicular bisector of angle $$\theta$$.
$$\therefore$$ $$\angle MOA = {\theta \over 2} = {\pi \over n}$$
From right angle triangle OMA,
$$\sin {\pi \over n} = {r \over {R + r}}$$
$$ \Rightarrow R + r = r{\mathop{\rm cosec}\nolimits} {\pi \over n}$$
Option A:
When $$n = 4$$,
$$R + r = r{\mathop{\rm cosec}\nolimits} {\pi \over 4}$$
$$ \Rightarrow R + r = \sqrt 2 r$$
$$ \Rightarrow R = \left( {\sqrt 2 - 1} \right)r$$
$$\therefore$$ Option (A) is wrong.
Option B :
When $$n = 5$$,
$$R + r = r{\mathop{\rm cosec}\nolimits} {\pi \over 5} = r{\mathop{\rm cosec}\nolimits} 36^\circ $$
We know, in 0 to $${\pi \over 2}$$, $${\mathop{\rm cosec}\nolimits} \theta $$ is decreasing.
$$\therefore$$ $${\mathop{\rm cosec}\nolimits} 45^\circ < {\mathop{\rm cosec}\nolimits} 36^\circ < {\mathop{\rm cosec}\nolimits} 30^\circ $$
$$ \Rightarrow \sqrt 2 < {\mathop{\rm cosec}\nolimits} 36^\circ < 2$$
$$ \Rightarrow \sqrt 2 r < r{\mathop{\rm cosec}\nolimits} 36^\circ < 2r$$
$$ \Rightarrow \sqrt 2 r - r < r{\mathop{\rm cosec}\nolimits} 36^\circ - r < 2r - r$$
$$ \Rightarrow \left( {\sqrt 2 - 1} \right)r < R < r$$
$$\therefore$$ $$R < r$$, when $$n = 5$$
$$\therefore$$ Option (B) is wrong.
Option C :
When $$n = 8$$,
$$R + r = r{\mathop{\rm cosec}\nolimits} {\pi \over 8}$$
$${\mathop{\rm cosec}\nolimits} \theta$$ is decreasing function in 0 to $${\pi \over 2}$$.
$$\therefore$$ $${\mathop{\rm cosec}\nolimits} {\pi \over 8} > {\mathop{\rm cosec}\nolimits} {\pi \over 4}$$
$$ \Rightarrow r{\mathop{\rm cosec}\nolimits} {\pi \over 8} > \sqrt 2 r$$
$$ \Rightarrow R + r > \sqrt 2 r$$
$$ \Rightarrow R > \left( {\sqrt 2 - 1} \right)r$$
$$\therefore$$ Option (C) is correct.
Option D :
When $$n = 12$$, then
$$R + r = r\left( {\cos ec{\pi \over {12}}} \right)$$
$$ \Rightarrow R + r = r \times {{2\sqrt 2 } \over {\sqrt 3 - 1}}$$ [as $$\cos ec{\pi \over {12}} = {{2\sqrt 2 } \over {\sqrt 3 - 1}}$$]
$$ \Rightarrow R + r = r \times {{2\sqrt 2 \left( {\sqrt 3 + 1} \right)} \over 2}$$
$$ \Rightarrow R + r = \sqrt 2 r\left( {\sqrt 3 + 1} \right)$$
$$ \Rightarrow R = \left[ {\sqrt 2 \left( {\sqrt 3 + 1} \right) - 1} \right]r$$
$$ \Rightarrow R < \sqrt 2 \left( {\sqrt 3 + 1} \right)r$$
$$\therefore$$ Option (D) is correct.
Comments (0)
