JEE Advance - Mathematics (2022 - Paper 2 Online - No. 10)
$$ \alpha=\sum\limits_{k = 1}^\infty {{{\sin }^{2k}}\left( {{\pi \over 6}} \right)} $$
Let $g:[0,1] \rightarrow \mathbb{R}$ be the function defined by
$$ g(x)=2^{\alpha x}+2^{\alpha(1-x)} . $$
Then, which of the following statements is/are TRUE ?
Explanation
Given,
$$\alpha = \sum\limits_{k = 1}^\alpha {{{\sin }^{2k}}\left( {{\pi \over 6}} \right)} $$
$$ = {\sin ^2}\left( {{\pi \over 6}} \right) + {\sin ^4}\left( {{\pi \over 6}} \right) + {\sin ^6}\left( {{\pi \over 6}} \right)\, + \,......$$
This is a infinite G.P.
$$\therefore$$ $$\alpha = {{{{\sin }^2}\left( {{\pi \over 6}} \right)} \over {1 - {{\sin }^2}\left( {{\pi \over 6}} \right)}}$$
$$ = {{{1 \over 4}} \over {1 - {1 \over 4}}}$$
$$ = {1 \over 4} \times {4 \over 3}$$
$$ = {1 \over 3}$$
$$\therefore$$ $$g(x) = {2^{{x \over 3}}} + {2^{{1 \over 3}(1 - x)}}$$
Given $$x \in [0,1]$$
We know,
$$AM \ge GM$$
For $${2^{{x \over 3}}}$$ and $${2^{{1 \over 3}(1 - x)}}$$ both are positive in $$x \in [0,1]$$
$${{{x^{{x \over 3}}} + {2^{{1 \over 3}(1 - x)}}} \over 2} \ge {\left( {{2^{{x \over 3}}}\,.\,{2^{{1 \over 3}(1 - x)}}} \right)^{{1 \over 2}}}$$
$$ \Rightarrow {{{2^{{x \over 3}}} + {2^{{1 \over 3}(1 - x)}}} \over 2} \ge {\left( {{2^{{1 \over 3}}}} \right)^{{1 \over 2}}}$$
$$ \Rightarrow {2^{{x \over 3}}} + {2^{{1 \over 3}(1 - x)}} \ge 2\,.\,{2^{{1 \over 6}}}$$
$$ \Rightarrow g(x) \ge {2^{{7 \over 6}}}$$
We know, $$AM = GM$$ when terms are equal.
$$\therefore$$ $$g(x) = {2^{{7 \over 6}}}$$ when
$${2^{{x \over 3}}} = {2^{{1 \over 3}(1 - x)}}$$
$$ \Rightarrow {x \over 3} = {{1 - x} \over 3}$$
$$ \Rightarrow 2x = 1$$
$$ \Rightarrow x = {1 \over 2}$$
$$\therefore$$ At $$x = {1 \over 2}$$, $${\left[ {g(x)} \right]_{\min }} = {2^{{7 \over 6}}}$$
$$\therefore$$ Option (A) is correct.
And option (D) is wrong as at only at a single point $$x = {1 \over 2},\,g(x)$$ is minimum.
Now, $$g(x) = {2^{{x \over 3}}} + {2^{{1 \over 3}(1 - x)}}$$
$$ = {2^{{x \over 3}}} + {{{2^{{1 \over 3}}}} \over {{2^{{x \over 3}}}}}$$
$$ = {2^{{x \over 3}}} + {2^{{1 \over 3}}}\,.\,{2^{ - {x \over 3}}}$$
$$\therefore$$ $$g'(x) = {2^{{x \over 3}}}\,.\,\log 2\,.\,{1 \over 3} + {2^{{1 \over 3}}}\,.\,{2^{ - {x \over 3}}}\,.\,\log 2\,.\,\left( { - {1 \over 3}} \right)$$
$$ = {1 \over 3}\log 2\left[ {{2^{{x \over 3}}} - {{{2^{{1 \over 3}}}} \over {{2^{{x \over 3}}}}}} \right]$$
$$ = {1 \over 3}\log 2\left[ {{{{2^{{{2x} \over 3}}} + {2^{{1 \over 3}}}} \over {{2^{{x \over 3}}}}}} \right]$$
We already found that at $$x = {1 \over 2}$$ $$g(x)$$ is minimum.
$$\therefore$$ $$g'(x) = 0$$ at $$x = {1 \over 2}$$
Now, $$g'(x) > 0$$ when
$${1 \over 3}\log \left[ {{{{2^{{{2x} \over 3}}} - {2^{{1 \over 3}}}} \over {{2^{{x \over 3}}}}}} \right] > 0$$
$$ \Rightarrow {2^{{{2x} \over 3}}} > {2^{{1 \over 3}}}$$
$$ \Rightarrow {{2x} \over 3} > {1 \over 3}$$
$$ \Rightarrow x > {1 \over 2}$$
Similarly, $$g'(x) < 0$$ when $$x < {1 \over 2}$$
If we put it in number line we get this
We know $$g'(x)$$ represent slope of curve $$g(x)$$ and it is negative when $$x < {1 \over 2}$$ and positive when $$x > {1 \over 2}$$ and zero when $$x = {1 \over 2}$$.
$$\therefore$$ Graph of $$g(x)$$ is
From graph you can see value of $$g(x)$$ is maximum either at $$x = 0$$ or $$x = 1$$ in the range $$x \in [0,1]$$.
$$\therefore$$ $$g(0) = {2^0} + {2^{{1 \over 3}}} = 1 + {2^{{1 \over 3}}}$$
$$g(1) = {2^{{1 \over 3}}} + {2^0} = 1 + {2^{{1 \over 3}}}$$
$$\therefore$$ We get maximum value at $$x = 0$$ and $$x = 1$$ both.
$$\therefore$$ B and C options are correct.
Comments (0)
