JEE Advance - Mathematics (2022 - Paper 1 Online - No. 2)
$$ f(x)=\sin \left(\frac{\pi x}{12}\right) \quad \text { and } \quad g(x)=\frac{2 \log _{\mathrm{e}}(\sqrt{x}-\sqrt{\alpha})}{\log _{\mathrm{e}}\left(e^{\sqrt{x}}-e^{\sqrt{\alpha}}\right)} . $$
Then the value of $$\lim \limits_{x \rightarrow \alpha^{+}} f(g(x))$$ is
Explanation
$$\mathop {\lim }\limits_{x \to {\alpha ^ + }} f(g(x)) = f\left( {\mathop {\lim }\limits_{x \to {\alpha ^ + }} g(x)} \right)$$ [As $$f(x)$$ is continuous function so we can write this]
Now,
$$\mathop {\lim }\limits_{x \to {\alpha ^ + }} g(x)$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {{{\log }_e}\left( {{e^{\sqrt x }} - {e^{\sqrt \alpha }}} \right)}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {{{\log }_e}\left( {{e^{\sqrt \alpha }}\left( {{{{e^{\sqrt x }}} \over {{e^{\sqrt \alpha }}}} - 1} \right)} \right)}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {{{\log }_e}\left[ {{e^{\sqrt \alpha }}({e^{\sqrt x - \sqrt \alpha }} - 1)} \right]}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {{{\log }_e}{e^{\sqrt \alpha }} + {{\log }_e}({e^{\sqrt x - \sqrt \alpha }} - 1)}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {\sqrt \alpha + {{\log }_e}\left[ {{{{e^{\sqrt x - \sqrt \alpha }} - 1} \over {(\sqrt x - \sqrt \alpha )}} \times (\sqrt x - \sqrt \alpha )} \right]}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {\sqrt \alpha + {{\log }_e}\left[ {\mathop {\lim }\limits_{x \to {\alpha ^ + }} \left( {{{{e^{\sqrt x - \sqrt \alpha }} - 1} \over {(\sqrt x - \sqrt \alpha )}} \times (\sqrt x - \sqrt \alpha )} \right)} \right]}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {\sqrt \alpha + {{\log }_e}(1 \times \sqrt x - \sqrt \alpha )}}$$ [using $$\mathop {\lim }\limits_{x \to 0} {{{e^2} - 1} \over x} = 1$$]
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {{2{{\log }_e}(\sqrt x - \sqrt \alpha )} \over {\sqrt \alpha + {{\log }_e}(\sqrt x - \sqrt \alpha )}}$$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {2 \over {{{\sqrt \alpha } \over {{{\log }_e}(\sqrt x - \sqrt \alpha )}} + 1}}$$
From graph you can see $$\log _e^{{0^ + }} \to \, - \alpha $$
$$\therefore$$ $$\mathop {\lim }\limits_{x \to {\alpha ^ + }} {\log _e}(\sqrt x - \sqrt \alpha ) = \log _e^{{0^ + }} = - \alpha $$
$$ = \mathop {\lim }\limits_{x \to {\alpha ^ + }} {2 \over {{{\sqrt \alpha } \over { - \alpha }} + 1}}$$
$$ = {2 \over {0 + 1}}$$
$$ = 2$$
$$\therefore$$ $$f\left( {\mathop {\lim }\limits_{x \to {\alpha ^ + }} g(x)} \right) = f(2) = \sin \left( {{{\pi \times 2} \over {12}}} \right) = \sin {\pi \over 6} = {1 \over 2}$$
Comments (0)
