JEE Advance - Mathematics (2022 - Paper 1 Online - No. 15)
Consider the following lists :
List-I | List-II |
---|---|
(I) $$\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$$ | (P) has two elements |
(II) $$\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$$ | (Q) has three elements |
(III) $$\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$$ | (R) has four elements |
(IV) $$\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$$ | (S) has five elements |
(T) has six elements |
The correct option is:
(I) $$\rightarrow(\mathrm{P})$$; (II) $$\rightarrow(\mathrm{S})$$; (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow(\mathrm{S})$$
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (P); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (R)
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow(\mathrm{P})$$; (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (S)
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow(\mathrm{S}) ;$$ (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow(\mathrm{R})$$
Explanation
Solving all question one by one we get,
$$ \begin{aligned} \text { (i) } & \left\{x \in\left[\frac{-2 \pi}{3}, \frac{2 \pi}{3}\right], \cos x+\sin x=1\right\} \\\\ & \cos x+\sin x=1 \\\\ \Rightarrow \quad & \sin \left(\frac{\pi}{4}+x\right)=\frac{1}{\sqrt{2}} \\\\ \Rightarrow & \frac{\pi}{4}+x=n \pi+(-1)^n \frac{\pi}{4} \end{aligned} $$
$$ \begin{aligned} & \Rightarrow x=n \pi+(-1)^n \frac{\pi}{4}-\frac{\pi}{4} \\\\ & \text { So, } x \in\left\{0, \frac{\pi}{2}\right\} \\\\ & \therefore x \text { has } 2 \text { elements } \rightarrow P \end{aligned} $$
$$ \begin{aligned} & \text { (ii) }\left\{x \in\left(\frac{-5 \pi}{18}, \frac{5 \pi}{18}\right), \sqrt{3} \tan 3 x=1\right\} \\\\ & \Rightarrow \tan 3 x=\frac{1}{\sqrt{3}} \\\\ & \Rightarrow x=n \pi+\frac{\pi}{6} \\\\ & \Rightarrow x=\frac{n \pi}{3}+\frac{\pi}{18} \\\\ & \text { So } x \in\left\{\frac{\pi}{18}, \frac{-5 \pi}{18}\right\} \\\\ & \therefore x \text { has 2 elements } \rightarrow P \end{aligned} $$
$$ \begin{aligned} & \text { (iii) }\left\{x \in\left[\frac{-6 \pi}{5}, \frac{6 \pi}{5}\right], 2 \cos 2 x=\sqrt{3}\right\} \\\\ & \Rightarrow 2 \cos 2 x=\sqrt{3} \\\\ & \Rightarrow \cos 2 x=\frac{\sqrt{3}}{2} \\\\ & \Rightarrow 2 x=2 n \pi \pm \frac{\pi}{6} \\\\ & \Rightarrow x=n \pi \pm \frac{\pi}{12} \\\\ & \text { So } x \in\left\{ \pm \frac{\pi}{12}, \pi \pm \frac{\pi}{12},-\pi \pm \frac{\pi}{12}\right\} \\\\ & \therefore x \text { has } 6 \text { elements } \rightarrow \mathrm{T} \end{aligned} $$
$$ \begin{aligned} & \text { (iv) }\left\{x \in\left[\frac{-7 \pi}{4}, \frac{7 \pi}{4}\right], \sin x-\cos x=1\right\} \\\\ & \Rightarrow \sin x-\cos x=1 \\\\ & \Rightarrow \sin \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\\\ & \Rightarrow x-\frac{\pi}{4}=n \pi+(-1)^n \frac{\pi}{4} \\\\ & \Rightarrow x=n \pi+(-1)^n \frac{\pi}{4}+\frac{\pi}{4} \\\\ & \text { So, } \\\\ & x \in\left\{\frac{\pi}{2}, \frac{-3 \pi}{2}, \pi,-\pi\right\} \\\\ & \therefore x \text { has } 4 \text { elements } \rightarrow \mathrm{R} \end{aligned} $$
$$ \begin{aligned} \text { (i) } & \left\{x \in\left[\frac{-2 \pi}{3}, \frac{2 \pi}{3}\right], \cos x+\sin x=1\right\} \\\\ & \cos x+\sin x=1 \\\\ \Rightarrow \quad & \sin \left(\frac{\pi}{4}+x\right)=\frac{1}{\sqrt{2}} \\\\ \Rightarrow & \frac{\pi}{4}+x=n \pi+(-1)^n \frac{\pi}{4} \end{aligned} $$
$$ \begin{aligned} & \Rightarrow x=n \pi+(-1)^n \frac{\pi}{4}-\frac{\pi}{4} \\\\ & \text { So, } x \in\left\{0, \frac{\pi}{2}\right\} \\\\ & \therefore x \text { has } 2 \text { elements } \rightarrow P \end{aligned} $$
$$ \begin{aligned} & \text { (ii) }\left\{x \in\left(\frac{-5 \pi}{18}, \frac{5 \pi}{18}\right), \sqrt{3} \tan 3 x=1\right\} \\\\ & \Rightarrow \tan 3 x=\frac{1}{\sqrt{3}} \\\\ & \Rightarrow x=n \pi+\frac{\pi}{6} \\\\ & \Rightarrow x=\frac{n \pi}{3}+\frac{\pi}{18} \\\\ & \text { So } x \in\left\{\frac{\pi}{18}, \frac{-5 \pi}{18}\right\} \\\\ & \therefore x \text { has 2 elements } \rightarrow P \end{aligned} $$
$$ \begin{aligned} & \text { (iii) }\left\{x \in\left[\frac{-6 \pi}{5}, \frac{6 \pi}{5}\right], 2 \cos 2 x=\sqrt{3}\right\} \\\\ & \Rightarrow 2 \cos 2 x=\sqrt{3} \\\\ & \Rightarrow \cos 2 x=\frac{\sqrt{3}}{2} \\\\ & \Rightarrow 2 x=2 n \pi \pm \frac{\pi}{6} \\\\ & \Rightarrow x=n \pi \pm \frac{\pi}{12} \\\\ & \text { So } x \in\left\{ \pm \frac{\pi}{12}, \pi \pm \frac{\pi}{12},-\pi \pm \frac{\pi}{12}\right\} \\\\ & \therefore x \text { has } 6 \text { elements } \rightarrow \mathrm{T} \end{aligned} $$
$$ \begin{aligned} & \text { (iv) }\left\{x \in\left[\frac{-7 \pi}{4}, \frac{7 \pi}{4}\right], \sin x-\cos x=1\right\} \\\\ & \Rightarrow \sin x-\cos x=1 \\\\ & \Rightarrow \sin \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\\\ & \Rightarrow x-\frac{\pi}{4}=n \pi+(-1)^n \frac{\pi}{4} \\\\ & \Rightarrow x=n \pi+(-1)^n \frac{\pi}{4}+\frac{\pi}{4} \\\\ & \text { So, } \\\\ & x \in\left\{\frac{\pi}{2}, \frac{-3 \pi}{2}, \pi,-\pi\right\} \\\\ & \therefore x \text { has } 4 \text { elements } \rightarrow \mathrm{R} \end{aligned} $$
Comments (0)
