JEE Advance - Mathematics (2021 - Paper 2 Online - No. 2)

Consider a triangle PQR having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) TRUE?
$$\cos P \ge 1 - {{{p^2}} \over {2qr}}$$
$$\cos R \ge \left( {{{q - r} \over {p + q}}} \right)\cos P + \left( {{{p - r} \over {p + q}}} \right)\cos Q$$
$${{q + r} \over p} < 2{{\sqrt {\sin q\sin R} } \over {\sin P}}$$
If p < q and p < r, then $$\cos Q > {p \over r}$$ and $$\cos R > {p \over q}$$

Explanation

For option (a) $$\cos P = {{{q^2} + {r^2} - {p^2}} \over {2qr}}$$ ..... (i)

JEE Advanced 2021 Paper 2 Online Mathematics - Properties of Triangle Question 2 English Explanation
$$\because$$ $${{{q^2} + {r^2}} \over 2} \ge \sqrt {{q^2}{r^2}} (AM \ge GM)$$

$$ \Rightarrow {q^2} + {r^2} \ge 2qr$$

From Eq. (i), we get

$$\cos P \ge {{2qr - {p^2}} \over {2qr}}$$

$$ \Rightarrow \cos P \ge 1 - {{{p^2}} \over {2qr}}$$ $$\to$$ option (a) is correct.

For option (b)

$${{(q - r)\cos P + (p - r)\cos Q} \over {p + q}}$$$$ = {{(q\cos P + p\cos Q) - r(\cos P + \cos Q)} \over {p + q}}$$

$$ \Rightarrow 4{\lambda ^2} - 2\lambda = 0$$

$$ \Rightarrow u\,.\,v\, = 0$$ (Rejected)

or $$u\,.\,v = {1 \over 2}$$

$$\therefore$$ $$u\,.\,v = {1 \over 2}$$

$$\therefore$$ $${\left| {3u + 5v} \right|^2} = 9{\left| u \right|^2} + 25{\left| v \right|^2} + 3 \times 5 \times 2 \times u\,.\,v$$

$$ = 9 + 25 + 30 \times {1 \over 2}$$

$$ = 49$$ ($$\because$$ $$\left| u \right| = \left| v \right| = 1$$, given)

$$\therefore$$ $$\left| {3u + 5v} \right| = 7$$

$$ = {{r - r(\cos P + \cos Q)} \over {p + q}} = {{r - r\cos P - r\cos Q} \over {p + q}}$$

$$ = {{r - (q - \cos R) - (p - q\cos R)} \over {p + q}}$$

$$ = {{(r - p - q) + (p + q)\cos R} \over {p + q}}$$

$$ = \cos R + {{r - (p + q)} \over {p + q}} \le \cos R$$ ($$\because$$ $$r < p + q$$)

Hence, option (b) is correct.

For option (c)

$${{q + r} \over p} = {{\sin Q + \sin R} \over {\sin P}} \ge {{2\sqrt {\sin Q.\sin R} } \over {\sin P}}$$

$$\to$$ option (c) is incorrect.

For option (d)

If p < q and p < r, then p is the smallest side and hence one of Q or R can be obtuse.

So, one of cos Q and cos R can be negative.

Therefore, $$\cos Q > {p \over r}$$ and $$\cos R > {p \over q}$$ cannot hold always.

Option (d) is incorrect.

Comments (0)

Advertisement