JEE Advance - Mathematics (2021 - Paper 2 Online - No. 14)
Consider M with $$r = {{({2^{199}} - 1)\sqrt 2 } \over {{2^{198}}}}$$. The number of all those circles Dn that are inside M is
198
199
200
201
Explanation
$$\because$$ $$r = {{({2^{199}} - 1)\sqrt 2 } \over {{2^{198}}}}$$
Now, $$\sqrt 2 {s_{n - 1}} + {a_n} < \left( {{{{2^{199}} - 1} \over {{2^{198}}}}} \right)\sqrt 2 $$
$$2\sqrt 2 \left( {1 - {1 \over {{2^{n - 1}}}}} \right) + {1 \over {{2^{n - 1}}}} < \left( {{{{2^{199}} - 1} \over {{2^{198}}}}} \right)\sqrt 2 $$
$$\therefore$$ $$2\sqrt 2 - {{\sqrt 2 } \over {{2^{n - 2}}}} + {1 \over {{2^{n - 1}}}} < 2\sqrt 2 - {{\sqrt 2 } \over {{2^{198}}}}$$
$${1 \over {{2^{n - 2}}}}\left( {{1 \over 2} - \sqrt 2 } \right) < - {{\sqrt 2 } \over {{2^{198}}}} \Rightarrow {{2\sqrt 2 - 1} \over {2\,.\,{2^{n - 2}}}} > {{\sqrt 2 } \over {{2^{198}}}}$$
$$ \Rightarrow {2^{n - 2}} < \left( {2 - {1 \over {\sqrt 2 }}} \right)\,.\,{2^{197}}$$
$$\therefore$$ n $$\le$$ 199
So, number of circles = 199
Now, $$\sqrt 2 {s_{n - 1}} + {a_n} < \left( {{{{2^{199}} - 1} \over {{2^{198}}}}} \right)\sqrt 2 $$
$$2\sqrt 2 \left( {1 - {1 \over {{2^{n - 1}}}}} \right) + {1 \over {{2^{n - 1}}}} < \left( {{{{2^{199}} - 1} \over {{2^{198}}}}} \right)\sqrt 2 $$
$$\therefore$$ $$2\sqrt 2 - {{\sqrt 2 } \over {{2^{n - 2}}}} + {1 \over {{2^{n - 1}}}} < 2\sqrt 2 - {{\sqrt 2 } \over {{2^{198}}}}$$
$${1 \over {{2^{n - 2}}}}\left( {{1 \over 2} - \sqrt 2 } \right) < - {{\sqrt 2 } \over {{2^{198}}}} \Rightarrow {{2\sqrt 2 - 1} \over {2\,.\,{2^{n - 2}}}} > {{\sqrt 2 } \over {{2^{198}}}}$$
$$ \Rightarrow {2^{n - 2}} < \left( {2 - {1 \over {\sqrt 2 }}} \right)\,.\,{2^{197}}$$
$$\therefore$$ n $$\le$$ 199
So, number of circles = 199
Comments (0)
