JEE Advance - Mathematics (2019 - Paper 1 Offline - No. 6)

Define the collections {E1, E2, E3, ...} of ellipses and {R1, R2, R3.....} of rectangles as follows :

$${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$

R1 : rectangle of largest area, with sides parallel to the axes, inscribed in E1;

En : ellipse $${{{x^2}} \over {a_n^2}} + {{{y^2}} \over {b_n^2}} = 1$$ of the largest area inscribed in $${R_{n - 1}},n > 1$$;

Rn : rectangle of largest area, with sides parallel to the axes, inscribed in En, n > 1.

Then which of the following options is/are correct?
The eccentricities of E18 and E19 are not equal.
The distance of a focus from the centre in E9 is $${{\sqrt 5 } \over {32}}$$.
$$\sum\limits_{n = 1}^N {(area\,of\,{R_n})} $$ < 24, for each positive integer N.
The length of latusrectum of E9 is $${1 \over 6}$$

Explanation

Given equation of ellipse

$${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ ... (i)

Now, let a vertex of rectangle of largest area with sides parallel to the axes, inscribed in E1 be (3cos$$\theta $$, 2sin$$\theta $$).

So, area of rectangle

R1 = 2(3cos$$\theta $$) $$ \times $$ 2(2sin$$\theta $$) = 12sin(2$$\theta $$)



The area of R1 will be maximum, $$\theta = {\pi \over 4}$$ and maximum area is 12 square units and length of sides of rectangle R1 are $$2a\cos \theta = \sqrt 2 a = 3\sqrt 2 $$ = length of major axis of ellipse E2 and

$$2b\sin \theta = \sqrt 2 b = 2\sqrt 2 $$ = length of minor axis of ellipse E2.

So, $${E_2}:{{{x^2}} \over {{{\left( {{a \over {\sqrt 2 }}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{b \over {\sqrt 2 }}} \right)}^2}}} = 1$$ and

maximum area of rectangle

$${R_2}:2\left( {{a \over {\sqrt 2 }}} \right)\left( {{b \over {\sqrt 2 }}} \right)$$ and so on.

So, $${E_n} = {{{x^2}} \over {{{\left( {{a \over {{{(\sqrt 2 )}^{n - 1}}}}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{b \over {{{(\sqrt 2 )}^{n - 1}}}}} \right)}^2}}} = 1$$,

and maximum area of rectangle

$${R_n} = 2\left( {{a \over {{{(\sqrt 2 )}^{n - 1}}}}} \right) + \left( {{b \over {{{(\sqrt 2 )}^{n - 1}}}}} \right)$$

Now option (a),

Since, eccentricity of ellipse

$${E_n} = e{'_n} = \sqrt {1 - {{{{({b_n})}^2}} \over {{{({a_n})}^2}}}} $$

$$ = \sqrt {1 - {{{{\left( {{b \over {(\sqrt {2{)^{n - 1}}} }}} \right)}^2}} \over {{{\left( {{a \over {(\sqrt {2{)^{n - 1}}} }}} \right)}^2}}}} $$

$$ = \sqrt {1 - {{{b^2}} \over {{a^2}}}} = \sqrt {1 - {4 \over 9}} = {{\sqrt 5 } \over 3}$$

is independent of 'n', so eccentricity of E18 and E19 are equal.

Option (b),

Distance between focus and centre of

$${E_9} = e.{a_9} = {a \over {{{(\sqrt 2 )}^8}}}(e)$$

$$ = {3 \over {{2^4}}} \times {{\sqrt 5 } \over 3} = {{\sqrt 5 } \over {16}}$$ unit

Option (c),

$$ \because $$ $$\sum\limits_{n = 1}^N {(area\,of\,{R_n})} < (area\,of\,{R_1}) + (area\,of\,{R_2}) + .....\infty $$

$$ < 2ab + 2{{ab} \over 2} + 2{{ab} \over {{2^2}}} + .......$$

$$ < 2ab\left( {1 + {1 \over 2} + {1 \over {{2^2}}} + .....} \right)$$

$$ < 12\left( {{1 \over {1 - 1/2}}} \right)$$

$$ \Rightarrow \sum\limits_{n = 1}^N {(area\,of\,{R_n}} ) < 24$$, for each positive integer N.

Option (d),

Length of latusrectum $${E_9} = {{2b_9^2} \over {{a_9}}} = {{2{b^2}} \over {a{{(\sqrt 2 )}^8}}}$$

$$ = {{2 \times 4} \over {3 \times 16}} = {1 \over 6}$$ units

Hence, options (c) and (d) are correct.

Comments (0)

Advertisement