JEE Advance - Mathematics (2019 - Paper 1 Offline - No. 5)

Let $$\Gamma $$ denote a curve y = y(x) which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to I` at a point P intersect the y-axis at YP. If PYP has length 1 for each point P on I`, then which of the following options is/are correct?
$$xy' + \sqrt {1 - {x^2}} = 0$$
$$xy' - \sqrt {1 - {x^2}} = 0$$
$$y = {\log _e}\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) - \sqrt {1 - {x^2}} $$
$$y = - {\log _e}\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) + \sqrt {1 - {x^2}} $$

Explanation

Let a point P(h, k) on the curve y = y(x), so equation of tangent to the curve at point P is

$$y - k = {\left( {{{dy} \over {dx}}} \right)_{h,k}}(x - h)$$ ....(i)

Now, the tangent (i) intersect the Y-axis at Yp, so coordinates Yp is $$\left( {0,k - h{{dy} \over {dx}}} \right)$$,

where $${{{dy} \over {dx}}}$$ = $${\left( {{{dy} \over {dx}}} \right)}$$(h,k)

So, PYp = 1 (given)

$$ \Rightarrow \sqrt {{h^2} + {h^2}{{\left( {{{dy} \over {dx}}} \right)}^2}} = 1$$

$$ \Rightarrow {{dy} \over {dx}} = \pm {{\sqrt {1 - {x^2}} } \over x}$$

[on replacing h by x]

$$ \Rightarrow dy = \pm {{\sqrt {1 - {x^2}} } \over x}dx$$

On puting x = sin$$\theta $$, dx = cos$$\theta $$d$$\theta $$, we get

$$dy = \pm {{\sqrt {1 - {{\sin }^2}\theta } } \over {\sin \theta }}\cos \theta d\theta $$

$$ = \pm {{{{\cos }^2}\theta } \over {\sin \theta }}d\theta $$

$$ = \pm (\cos ec\theta - \sin \theta )d\theta $$

$$ \Rightarrow y = \pm [1n(\cos ec\theta - \cot \theta ) + \cos \theta ] + C$$

$$ \Rightarrow y = \pm \left[ {1n\left( {{{1 - \cos \theta } \over {\sin \theta }}} \right) + \cos \theta } \right] + C$$

$$ \Rightarrow y = \pm \left[ {1n\left( {{{1 - \sqrt {1 - {{\sin }^2}\theta } } \over {\sin \theta }}} \right) + \sqrt {1 - {{\sin }^2}\theta } } \right] + C$$

$$ \Rightarrow y = \pm \left[ {1n\left( {{{1 - \sqrt {1 - {x^2}} } \over x}} \right) + \sqrt {1 - {x^2}} } \right] + C$$

[$$ \because $$ x = sin$$\theta $$]

$$ = \pm \left[ { - 1n{{1 + \sqrt {1 - {x^2}} } \over x} + \sqrt {1 - {x^2}} } \right] + C$$

[on rationalization]

$$ \because $$ The curve is in the first quadrant so y must be positive, so

$$y = 1n\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) - \sqrt {1 - {x^2}} + C$$

As curve passes through (1, 0), so

$$0 = 0 - 0 + c \Rightarrow c = 0$$, so required curve is

$$y = 1n\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) - \sqrt {1 - {x^2}} $$

and required differential eaquation is

$${{dy} \over {dx}} = - {{\sqrt {1 - {x^2}} } \over x}$$

$$ \Rightarrow xy' + \sqrt {1 - {x^2}} = 0$$

Hence, options (a) and (c) are correct.

Comments (0)

Advertisement