JEE Advance - Mathematics (2019 - Paper 1 Offline - No. 15)
Let $$\omega \ne 1$$ be a cube root of unity. Then the minimum of the set $$\{ {\left| {a + b\omega + c{\omega ^2}} \right|^2}:a,b,c$$ distinct non-zero integers} equals ..................
Answer
3
Explanation
Given, $$\omega \ne 1$$ be a cube root of unity, then $${\left| {a + b\omega + c{\omega ^2}} \right|^2}$$
= $$(a + b\omega + c{\omega ^2})\overline {(a + b\omega + c{\omega ^2})} $$,
[$$ \because $$ $$z\overline z = |z{|^2}$$]
= $$(a + b\omega + c{\omega ^2})$$ $${(a + b\overline \omega + 2c{{\overline \omega }^2})}$$
[$$ \because $$ $${\overline \omega }$$ = $$\omega $$2 and $${{{\overline \omega }^2}}$$ = $$\omega $$]
= $${a^2} + {b^2} + {c^2} + ab({\omega ^2} + \omega ) + bc({\omega ^2} + {\omega ^4}) + ac(\omega + {\omega ^2})$$
[as $${\omega ^3} = 1$$]
$$ = {a^2} + {b^2} + {c^2} + ab( - 1) + bc( - 1) + ac( - 1)$$
[as $$\omega + {\omega ^2} = - 1,\,{\omega ^4} = \omega $$]
$$ = {a^2} + {b^2} + {c^2} - ab - bc - ca$$
$$ = {1 \over 2}\{ {(a - b)^2} + {(b - c)^2} + {(c - a)^2}\} $$
$$ \because $$ a, b and c are distinct non-zero integers. For minimum value a= 1, b = 2 and c = 3
$$ \therefore $$ $$|a + b\omega + c{\omega ^2}|_{\min }^2 = {1 \over 2}\{ {1^2} + {1^2} + {2^2}\} = {6 \over 2} = 3.00$$
= $$(a + b\omega + c{\omega ^2})\overline {(a + b\omega + c{\omega ^2})} $$,
[$$ \because $$ $$z\overline z = |z{|^2}$$]
= $$(a + b\omega + c{\omega ^2})$$ $${(a + b\overline \omega + 2c{{\overline \omega }^2})}$$
[$$ \because $$ $${\overline \omega }$$ = $$\omega $$2 and $${{{\overline \omega }^2}}$$ = $$\omega $$]
= $${a^2} + {b^2} + {c^2} + ab({\omega ^2} + \omega ) + bc({\omega ^2} + {\omega ^4}) + ac(\omega + {\omega ^2})$$
[as $${\omega ^3} = 1$$]
$$ = {a^2} + {b^2} + {c^2} + ab( - 1) + bc( - 1) + ac( - 1)$$
[as $$\omega + {\omega ^2} = - 1,\,{\omega ^4} = \omega $$]
$$ = {a^2} + {b^2} + {c^2} - ab - bc - ca$$
$$ = {1 \over 2}\{ {(a - b)^2} + {(b - c)^2} + {(c - a)^2}\} $$
$$ \because $$ a, b and c are distinct non-zero integers. For minimum value a= 1, b = 2 and c = 3
$$ \therefore $$ $$|a + b\omega + c{\omega ^2}|_{\min }^2 = {1 \over 2}\{ {1^2} + {1^2} + {2^2}\} = {6 \over 2} = 3.00$$
Comments (0)
