JEE Advance - Mathematics (2018 - Paper 2 Offline - No. 6)
Let f : (0, $$\pi $$) $$ \to $$ R be a twice differentiable function such that $$\mathop {\lim }\limits_{t \to x} {{f(x)\sin t - f(t)\sin x} \over {t - x}} = {\sin ^2}x$$ for all x$$ \in $$ (0, $$\pi $$).
If $$f\left( {{\pi \over 6}} \right) = - {\pi \over {12}}$$, then which of the following statement(s) is (are) TRUE?
If $$f\left( {{\pi \over 6}} \right) = - {\pi \over {12}}$$, then which of the following statement(s) is (are) TRUE?
$$f\left( {{\pi \over 4}} \right) = {\pi \over {4\sqrt 2 }}$$
$$f(x) < {{{x^4}} \over 6} - {x^2}$$ for all x$$ \in $$(0, $$\pi $$)
There exists $$\alpha $$$$ \in $$(0, $$\pi $$) such that f'($$\alpha $$) = 0
$$f''\left( {{\pi \over 2}} \right) + f\left( {{\pi \over 2}} \right) = 0$$
Explanation
Given,
$$\mathop {\lim }\limits_{t \to x} {{f(x)\sin t - f(t)\sin x} \over {t - x}} = {\sin ^2}x$$
Using L' Hospital rules
$$\mathop {\lim }\limits_{t \to x} {{f(x)\cos t - f'(t)\sin x} \over 1} = {\sin ^2}x$$
$$ \Rightarrow f(x)\cos x - f'(x)\sin x = {\sin ^2}x$$
$$ \Rightarrow f'(x)\sin x - f(x)\cos x = - {\sin ^2}x$$
$$ \Rightarrow {{f'(x)\sin x - f(x)\cos x} \over {{{\sin }^2}x}} = - 1$$
$$ \Rightarrow d\left( {{{f(x)} \over {\sin x}}} \right) = - 1$$
On integrating, we get
$${{f(x)} \over {\sin x}} = - x + C$$
$$ \Rightarrow f(x) = - x\sin x + C\sin x$$
It is given that $$x = {\pi \over 6},\,f\left( {{\pi \over 6}} \right) = - {\pi \over {12}}$$
$$ \therefore $$ $$f\left( {{\pi \over 6}} \right) = - {\pi \over 6}\sin {\pi \over 6} + C\sin {\pi \over 6}$$
$$ = - {\pi \over {12}} = - {\pi \over {12}} + {1 \over 2}C$$
$$ \Rightarrow C = 0$$
$$ \therefore $$ $$f(x) = - x\sin x$$
(a) $$f(x) = - x\sin x$$
$$f\left( {{\pi \over 4}} \right) = - {\pi \over 4}\sin {\pi \over 4} = - {\pi \over {4\sqrt 2 }}$$ false
(b) f(x) = $$-$$ x sin x
$$\sin x > x - {{{x^3}} \over 6},\,\forall x \in (0,\pi )$$
$$ \Rightarrow - x\sin x < - {x^2} + {{{x^4}} \over 6}$$
$$ \Rightarrow f(x) < {{{x^4}} \over 6} - {x^2},\,\forall x \in (0,\,\pi )$$
It is true.
(c) f(x) = $$-$$x sin x
f'(x) = $$-$$ sin x $$-$$ x cos x
f'(x) = 0
$$ \Rightarrow $$ $$-$$ sin x $$-$$ x cos x = 0
tan x = $$-$$ x
$$ \Rightarrow $$ Their exists $$\alpha $$$$ \in $$(0, $$\pi $$) for which f'($$\alpha $$) = 0
It is true.
(d) $$f(x) = - x\sin x$$
$$f'(x) = - \sin x - x\cos x$$
$$f''(x) = - 2\cos x + x\sin x$$
$$f''\left( {{\pi \over 2}} \right) = {\pi \over 2},\,f\left( {{\pi \over 2}} \right) = - {\pi \over 2}$$
$$ \therefore $$ $$f''\left( {{\pi \over 2}} \right) + f\left( {{\pi \over 2}} \right) = 0$$
It is true.
$$\mathop {\lim }\limits_{t \to x} {{f(x)\sin t - f(t)\sin x} \over {t - x}} = {\sin ^2}x$$
Using L' Hospital rules
$$\mathop {\lim }\limits_{t \to x} {{f(x)\cos t - f'(t)\sin x} \over 1} = {\sin ^2}x$$
$$ \Rightarrow f(x)\cos x - f'(x)\sin x = {\sin ^2}x$$
$$ \Rightarrow f'(x)\sin x - f(x)\cos x = - {\sin ^2}x$$
$$ \Rightarrow {{f'(x)\sin x - f(x)\cos x} \over {{{\sin }^2}x}} = - 1$$
$$ \Rightarrow d\left( {{{f(x)} \over {\sin x}}} \right) = - 1$$
On integrating, we get
$${{f(x)} \over {\sin x}} = - x + C$$
$$ \Rightarrow f(x) = - x\sin x + C\sin x$$
It is given that $$x = {\pi \over 6},\,f\left( {{\pi \over 6}} \right) = - {\pi \over {12}}$$
$$ \therefore $$ $$f\left( {{\pi \over 6}} \right) = - {\pi \over 6}\sin {\pi \over 6} + C\sin {\pi \over 6}$$
$$ = - {\pi \over {12}} = - {\pi \over {12}} + {1 \over 2}C$$
$$ \Rightarrow C = 0$$
$$ \therefore $$ $$f(x) = - x\sin x$$
(a) $$f(x) = - x\sin x$$
$$f\left( {{\pi \over 4}} \right) = - {\pi \over 4}\sin {\pi \over 4} = - {\pi \over {4\sqrt 2 }}$$ false
(b) f(x) = $$-$$ x sin x
$$\sin x > x - {{{x^3}} \over 6},\,\forall x \in (0,\pi )$$
$$ \Rightarrow - x\sin x < - {x^2} + {{{x^4}} \over 6}$$
$$ \Rightarrow f(x) < {{{x^4}} \over 6} - {x^2},\,\forall x \in (0,\,\pi )$$
It is true.
(c) f(x) = $$-$$x sin x
f'(x) = $$-$$ sin x $$-$$ x cos x
f'(x) = 0
$$ \Rightarrow $$ $$-$$ sin x $$-$$ x cos x = 0
tan x = $$-$$ x

$$ \Rightarrow $$ Their exists $$\alpha $$$$ \in $$(0, $$\pi $$) for which f'($$\alpha $$) = 0
It is true.
(d) $$f(x) = - x\sin x$$
$$f'(x) = - \sin x - x\cos x$$
$$f''(x) = - 2\cos x + x\sin x$$
$$f''\left( {{\pi \over 2}} \right) = {\pi \over 2},\,f\left( {{\pi \over 2}} \right) = - {\pi \over 2}$$
$$ \therefore $$ $$f''\left( {{\pi \over 2}} \right) + f\left( {{\pi \over 2}} \right) = 0$$
It is true.
Comments (0)
