JEE Advance - Mathematics (2018 - Paper 2 Offline - No. 17)

Let $$H:{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$, where a > b > 0, be a hyperbola in the XY-plane whose conjugate axis LM subtends an angle of 60$$^\circ $$ at one of its vertices N. Let the area of the $$\Delta $$LMN be $$4\sqrt 3 $$.

List - I List - II
P. The length of the conjugate axis of H is 1. 8
Q. The eccentricity of H is 2. $${4 \over {\sqrt 3 }}$$
R. The distance between the foci of H is 3. $${2 \over {\sqrt 3 }}$$
S. The length of the latus rectum of H is 4. 4
P $$ \to $$ 4 ; Q $$ \to $$ 2 ; R $$ \to $$ 1 ; S $$ \to $$ 3
P $$ \to $$ 4 ; Q $$ \to $$ 3 ; R $$ \to $$ 1 ; S $$ \to $$ 2
P $$ \to $$ 4 ; Q $$ \to $$ 1 ; R $$ \to $$ 3 ; S $$ \to $$ 2
P $$ \to $$ 3 ; Q $$ \to $$ 4 ; R $$ \to $$ 2 ; S $$ \to $$ 1

Explanation

We have,

Equation of hyperbola

$${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$

JEE Advanced 2018 Paper 2 Offline Mathematics - Hyperbola Question 7 English Explanation

It is given,

$$\angle LNM = 60^\circ {4 \over {\sqrt 3 }}$$

and Area of $$\Delta LMN = 4\sqrt 3 $$

Now, $$\Delta LMN$$ is an equilateral triangle whose sides is 2b [$$ \because $$ $$\Delta LON$$ $$ \cong $$ $$\Delta MOL$$; $$ \because $$ $$\angle NLO = \angle NMO = 60^\circ $$]

$$ \therefore $$ Area of $$\Delta LMN = {{\sqrt 3 } \over 4}{(2b)^2}$$

$$ \Rightarrow $$ $$4\sqrt 3 = \sqrt 3 {b^2} \Rightarrow b = 2$$

Also, area of $$\Delta LMN = {1 \over 2}a(2b) = ab$$

$$ \Rightarrow $$ $$4\sqrt 3 = a(2)$$

$$ \Rightarrow $$ $$a = 2\sqrt 3 $$

(P) Length of conjugate axis = 2b = 2(2) = 4 (Q)

Eccentricity (e) = $$\sqrt {1 + {{{b^2}} \over {{a^2}}}} = \sqrt {1 + {4 \over {12}}} $$

= $${4 \over {2\sqrt 3 }} = {2 \over {\sqrt 3 }}$$

(R) Distance between the foci

= $$2ae = 2 \times 2\sqrt 3 \times {2 \over {\sqrt 3 }} = 8$$

(S) The length of latusrectum

= $${{2{b^2}} \over a} = {{2(4)} \over {2\sqrt 3 }} = {4 \over {\sqrt 3 }}$$

P $$ \to $$ 4; Q $$ \to $$ 3; R $$ \to $$ 1; S $$ \to $$ 2

Hence, option (b) is correct.

Comments (0)

Advertisement