JEE Advance - Mathematics (2018 - Paper 2 Offline - No. 11)

Let f : R $$ \to $$ R be a differentiable function with f(0) = 1 and satisfying the equation f(x + y) = f(x) f'(y) + f'(x) f(y) for all x, y$$ \in $$ R.

Then, the value of loge(f(4)) is ...........
Answer
2

Explanation

Given,

$$f(x + y) = f(x)f'(y) + f'(x)f(y),\,\forall x,y \in R$$ and f(0) = 1

Put x = y = 0, we get

f(0) = f(0) f'(0) + f'(0) f(0)

$$ \Rightarrow 1 = 2f'(0) \Rightarrow f'(0) = {1 \over 2}$$

Put x = x and y = 0, we get

f(x) = f(x) f'(0) + f'(x) f(0)

$$ \Rightarrow f(x) = {1 \over 2}f(x) + f'(x)$$

$$ \Rightarrow f'(x) = {1 \over 2}f(x) \Rightarrow {{f'(x)} \over {f(x)}} = {1 \over 2}$$

On integrating, we get

$$\log f(x) = {1 \over 2}x + C$$

$$ \Rightarrow f(x) = A{e^{{1 \over 2}x}}$$, where eC = A

If f(0) = 1, then A = 1

Hence, $$f(x) = {e^{{1 \over 2}x}}$$

$$ \Rightarrow {\log _e}f(x) = {1 \over 2}x$$

$$ \Rightarrow {\log _e}f(4) = {1 \over 2} \times 4 = 2$$

Comments (0)

Advertisement