JEE Advance - Mathematics (2017 - Paper 1 Offline - No. 10)

Let f : R $$ \to $$ R be a differentiable function such that f(0) = 0, $$f\left( {{\pi \over 2}} \right) = 3$$ and f'(0) = 1.

If $$g(x) = \int\limits_x^{\pi /2} {[f'(t)\text{cosec}\,t - \cot t\,\text{cosec}\,t\,f(t)]dt} $$

for $$x \in \left( {0,\,{\pi \over 2}} \right]$$, then $$\mathop {\lim }\limits_{x \to 0} g(x)$$ =
Answer
2

Explanation

Let $$g(x) = \int\limits_x^{\pi /2} {[f'(t)\text{cosec}\,t - \cot t\,\text{cosec}\,t\,f(t)]dt} $$

$$ = \int\limits_x^{\pi /2} {{d \over {dt}}(f(t)\cos ect))} $$

So, $$g(x) = f(\pi /2)\cos ec{\pi \over 2} - f(x)\cos ecx$$

$$ = 3 - f(x)\cos ecx$$

$$\therefore$$ $$g(x) = 3 - {{f(x)} \over {\sin x}}$$

$$\mathop {\lim }\limits_{x \to 0} g(x) = 3 - \mathop {\lim }\limits_{x \to 0} {{f(x)} \over {\sin x}}$$

As the above is a 0/0 form, use L'Hospital's rule to get

$$\mathop {\lim }\limits_{x \to 0} g(x) = 3 - \mathop {\lim }\limits_{x \to 0} {{f'(x)} \over {\cos x}} = 3 - f'(0) = 3 - 1 = 2$$

Comments (0)

Advertisement