JEE Advance - Mathematics (2016 - Paper 1 Offline - No. 9)
Explanation
In case of option (A)
x2 + y2 = 3 and x2 = 2y
Solving we get $$P(\sqrt 2 ,1)$$
Equation of tangent at P on the circle
$$x\sqrt 2 + y = 3$$ $$\therefore$$ $$\tan \alpha = - \sqrt 2 $$
Again, $${{{Q_2}{R_2}} \over {{Q_2}M}} = \sin \left( {\alpha - {\pi \over 2}} \right)$$
or, $${{2\sqrt 3 } \over {{Q_2}M}} = - \cos \alpha = - {1 \over {\sqrt 3 }}$$ [$$\because$$ $$\tan \alpha = - \sqrt 2 $$]
or, $${Q_2}M = 6$$
Similarly, $${Q_3}M = 6$$
$$\therefore$$ $${Q_2}{Q_3} = 12$$
In case of option (B)
$${{M{R_2}} \over {{Q_2}{R_2}}} = \tan \left( {\alpha - {\pi \over 2}} \right)$$
or, $${{M{R_2}} \over {2\sqrt 3 }} = - \tan \alpha = \sqrt 2 $$
or, $$M{R_2} = 2\sqrt 6 $$
Similarly, $$M{R_3} = 2\sqrt 6 $$ $$\therefore$$ $${R_2}{R_3} = 4\sqrt 6 $$
In case of option (C)
OP is the perpendicular drawn from O to R2R3
$$\therefore$$ area of $$\Delta O{R_2}{R_3} = {1 \over 2} \times OP \times {R_2}{R_3} = {1 \over 2} \times \sqrt 3 \times 4\sqrt 6 =6\sqrt 2 $$
In case of option (D)
PT is perpendicular drawn from P to Q2Q3
$$\therefore$$ area of $$\Delta P{Q_2}{Q_3} = {1 \over 2} \times PT \times {Q_2}{Q_3} = {1 \over 2} \times \sqrt 2 \times 12 = 6\sqrt 2 $$
Therefore, (A), (B), (C) are correct options.
Comments (0)
