JEE Advance - Mathematics (2016 - Paper 1 Offline - No. 17)
Explanation
Here, $$z = {{ - 1 + i\sqrt 3 } \over 2} = \omega $$
$$\because$$ $$P = \left[ {\matrix{ {{{( - \omega )}^r}} & {{\omega ^{2s}}} \cr {{\omega ^{2s}}} & {{\omega ^r}} \cr } } \right]$$
$${P^2} = \left[ {\matrix{ {{{( - \omega )}^r}} & {{\omega ^{2s}}} \cr {{\omega ^{2s}}} & {{\omega ^r}} \cr } } \right]\left[ {\matrix{ {{{( - \omega )}^r}} & {{\omega ^{2s}}} \cr {{\omega ^{2s}}} & {{\omega ^r}} \cr } } \right]$$$$ = \left[ {\matrix{ {{\omega ^{2r}} + {\omega ^{4s}}} & {{\omega ^{r + 2s}}[{{( - 1)}^r} + 1]} \cr {{\omega ^{r + 2s}}[{{( - 1)}^r} + 1]} & {{\omega ^{4s}} + {\omega ^{2r}}} \cr } } \right]$$
Given, $${P^2} = - I$$
$$\therefore$$ $${\omega ^{2r}} + {\omega ^{4s}} = - 1$$
and $${\omega ^{r + 2s}}[{( - 1)^r} + 1] = 0$$
Since, r $$\in$$ {1, 2, 3} and ($$-$$1)r + 1 = 0
$$\Rightarrow$$ r = {1, 3}
Also, $${\omega ^{2r}} + {\omega ^{4s}} = - 1$$
If r = 1, then $${\omega ^2} + {\omega ^{4s}} = - 1$$
which is only possible, when s = 1.
As, $${\omega ^2} + {\omega ^4} = - 1$$
$$\therefore$$ r = 1, s = 1
Again, if r = 3, then
$${\omega ^6} + {\omega ^{4s}} = - 1$$
$$ \Rightarrow {\omega ^{4s}} = - 2$$ [never possible]
$$\therefore$$ r $$\ne$$ 3
$$\Rightarrow$$ (r, s) = (1, 1) is the only solution.
Hence, the total number of ordered pairs is 1.
Comments (0)
