JEE Advance - Mathematics (2015 - Paper 2 Offline - No. 18)
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F'\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$
The correct statement(s) is (are)
Explanation
Given,
F(1) = 0, F(3) = 4
F'(x) < 0 for all x $$\in$$(1, 3)
and f(x) = xF(x)
Now, f'(x) = F(x) + xF'(x)
$$\Rightarrow$$ f'(1) = F(1) + 1 . F'(1)
$$\Rightarrow$$ f'(1) = 0 + F'(1) ....... (1)
As F'(x) < 0 for all x $$\in$$ (1, 3)
$$\therefore$$ F'(1) < 0
From (1), we get
f'(1) = F'(1) < 0
From Lagrange theorem
$$F'(2) = {{F(3) - F(1)} \over {3 - 1}}$$
$$ = {{ - 4 - 0} \over 2}$$
= $$-$$2
As f(x) = xF(x)
$$\therefore$$ f(3) = 3 . F(3) = 3 . ($$-$$4) = $$-$$12
and f(1) = 1 . F(1) = 0
$$\therefore$$ $$f'(2) = {{f(3) - f(1)} \over {3 - 1}}$$
$$ = {{ - 12} \over 2} = - 6$$
As, f'(x) = F(x) + x . F'(x)
$$\therefore$$ f'(2) = F(2) + 2 . F'(2)
$$ \Rightarrow - 6 = {{f(2)} \over 2} + 2.\,( - 2)$$
$$ \Rightarrow {{f(2)} \over 2} = - 2$$
$$\Rightarrow$$ f(2) = $$-$$4
$$\therefore$$ f(2) < 0
$$f'(x) = {{f(3) - f(1)} \over {3 - 1}}$$ when x $$\in$$ (1, 3)
f(3) = $$-$$12
and f(1) = 0
$$\therefore$$ $$f'(x) = {{ - 12} \over 2} = - 6$$
$$\therefore$$ f'(x) $$\ne$$ 0 for any x $$\in$$(1, 3)
Comments (0)
