JEE Advance - Mathematics (2015 - Paper 2 Offline - No. 15)
Explanation
Let $${I_1} = \int_0^{4\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} $$
$$ = \int_0^\pi {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt + \int_\pi ^{2\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt + \int_{2\pi }^{3\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt + \int_{3\pi }^{4\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} } } } $$
$$\therefore$$ $${I_1} = {I_2} + {I_3} + {I_4} + {I_5}$$ ...... (i)
Now, $${I_3} = \int_\pi ^{2\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} $$
Put $$t = \pi + t \Rightarrow dt = dt$$
$$\therefore$$ $${I_3} = \int_0^\pi {{e^{\pi + t}}.\,({{\sin }^6}at + {{\cos }^6}at)dt} $$
$$ = {e^t}\,.\,{I_2}$$ ..... (ii)
Now, $${I_4} = \int_{2\pi }^{3\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} $$
Put $$t = 2\pi + t \Rightarrow dt = dt$$
$$\therefore$$ $${I_4} = \int_0^\pi {{e^{t + 2\pi }}({{\sin }^6}at + {{\cos }^6}at)dt} $$
$$ = {e^{2\pi }}.{I_2}$$ ...... (iii)
and $${I_5} = \int_{3\pi }^{4\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} $$
Put $$t = 3\pi + t$$
$$\therefore$$ $${I_5} = \int_0^\pi {{e^{3\pi + t}}({{\sin }^6}at + {{\cos }^6}at)dt} $$
$$ = {e^{3\pi }}.\,{I_2}$$ ...... (iv)
From Eqs. (i), (ii), (iii) and (iv), we get
$${I_1} = {I_2} + {e^\pi }.\,{I_2} + {e^{2\pi }}.\,{I_2} + {e^{3\pi }}.\,{I_2}$$
$$ = (1 + {e^\pi } + {e^{2\pi }} + {e^{3\pi }}){I_2}$$
$$\therefore$$ $$L = {{\int_0^{4\pi } {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} } \over {\int_0^\pi {{e^t}({{\sin }^6}at + {{\cos }^6}at)dt} }}$$
$$ = (1 + {e^\pi } + {e^{2\pi }} + {e^{3\pi }})$$
$$ = {{1.\,({e^{4\pi }} - 1)} \over {{e^\pi } - 1}}$$ for $$a \in R$$
Comments (0)
