JEE Advance - Mathematics (2015 - Paper 2 Offline - No. 14)

Let $$f\left( x \right) = 7{\tan ^8}x + 7{\tan ^6}x - 3{\tan ^4}x - 3{\tan ^2}x$$ for all $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right).$$
Then the correct expression(s) is (are)
$$\int\limits_0^{\pi /4} {xf\left( x \right)dx = {1 \over {12}}} $$
$$\int\limits_0^{\pi /4} {f\left( x \right)dx = 0} $$
$$\int\limits_0^{\pi /4} {xf\left( x \right)dx = {1 \over {6}}} $$
$$\int\limits_0^{\pi /4} {f\left( x \right)dx = 1} $$

Explanation

$$f(x) = 7{\tan ^8}x + 7{\tan ^6}x - 3{\tan ^4}x - 3{\tan ^2}x\,\forall x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right)$$

$$ = 7{\tan ^6}x\,.\,{\sec ^2}x - 3{\tan ^2}x\,.\,{\sec ^2}x$$

$$ = (7{\tan ^6}x - 3{\tan ^2}x)\,.\,{\sec ^2}x$$

$$ \Rightarrow \int\limits_0^{\pi /4} {f(x)dx = \int\limits_0^{\pi /4} {(7{{\tan }^6}x - 3{{\tan }^2}x){{\sec }^2}dx = \int\limits_0^1 {(7 + 603{t^2})dt = [{t^7} - {t^3}]_0^1 = 0} } } $$

Also, $$I = \int\limits_0^{\pi /4} {xf(x)dx} $$

$$ = \left| {x\,.\,\int {(7{{\tan }^6}x - 3{{\tan }^2}x){{\sec }^2}xdx} } \right|_0^{\pi /4} - \int\limits_0^{\pi /4} {1\,.\,\int {(7{{\tan }^6}x - 3{{\tan }^2}x){{\sec }^2}x\,dx} } $$

$$ = \left| {x\,.\,({{\tan }^7}x - {{\tan }^3}x} \right|_0^{\pi /4} - \int\limits_0^{\pi /4} {({{\tan }^7}x - {{\tan }^3}x)dx} $$

$$ = 0 - \int\limits_0^{\pi /4} {{{\tan }^3}x({{\tan }^4}x - 1)dx} $$

$$ = - \int\limits_0^{\pi /4} {{{\tan }^3}x({{\tan }^2}x - 1)({{\sec }^2}x)dx} $$

$$ = - \int\limits_0^1 {({t^5} - {t^3})dt} $$

$$ = - \left[ {{{{t^6}} \over 6} - {{{t^4}} \over 4}} \right]_0^1 = \left[ {{1 \over 4} - {1 \over 6}} \right] = {1 \over {12}}$$

Comments (0)

Advertisement