JEE Advance - Mathematics (2014 - Paper 2 Offline - No. 4)
Explanation
Given three Boxes :
Given, that a card is drow from each box and $$x_i$$ denote the number on the card drawn from $$i^{\text {th }}$$ box, $$i=1,2,3$$.
Sample Space $$={ }^3 \mathrm{C}_1 .{ }^5 \mathrm{C}_1 .{ }^7 \mathrm{C}_1=3 \cdot 5 \cdot 7=105$$.
Let B be the event when $$x_1, x_2, x_3$$ are in A.P.
$$\Rightarrow 2 x_2=x_1+x_3$$
Here, $$x_1+x_3$$ is even number and for every even value of $$x_1+x_3$$ there is only one possible value of $$x_2$$
$$x_1+x_2$$ is even in two cases
Case I: When both $$x_1$$ and $$x_2$$ are even
No. of ways $$={ }^1 \mathrm{C}_1$$. $${ }^3 \mathrm{C}_{1=}=3$$
Case II: When both $$x_1$$ and $$x_2$$ are odd
No. of ways $$={ }^2 \mathrm{C}_1 .{ }^4 \mathrm{C}_1=2 \times 4=8$$
Number of favorable cases for $$\mathrm{B}=3+8=11$$
Required probability $$=\frac{11}{105}$$
Hint:
$$2 x_2=x_1+x_3$$ indicate, $$x_1+x_3$$ is even and for every even value of $$x_1+x_3$$ there is only one possible value of $$x_2$$. Now, $$x_1+x_3$$ is even in two cases:
(i) When both $$x_1$$ and $$x_2$$ are even.
(ii) When both $$x_1$$ and $$x_2$$ are odd.
Comments (0)
