JEE Advance - Mathematics (2014 - Paper 2 Offline - No. 17)
P.$$\,\,\,\,$$ The number of polynomials $$f(x)$$ with non-negative integer coefficients of degree $$ \le 2$$, satisfying $$f(0)=0$$ and $$\int_0^1 {f\left( x \right)dx = 1,} $$ is
Q.$$\,\,\,\,$$ The number of points in the interval $$\left[ { - \sqrt {13} ,\sqrt {13} } \right]$$
at which $$f\left( x \right) = \sin \left( {{x^2}} \right) + \cos \left( {{x^2}} \right)$$ attains its maximum value, is
R.$$\,\,\,\,$$ $$\int\limits_{ - 2}^2 {{{3{x^2}} \over {\left( {1 + {e^x}} \right)}}dx} $$ equals
S.$$\,\,\,\,$$ $${{\left( {\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)} \over {\left( {\int\limits_0^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)}}$$
List $$II$$
1.$$\,\,\,\,$$ $$8$$
2.$$\,\,\,\,$$ $$2$$
3.$$\,\,\,\,$$ $$4$$
4.$$\,\,\,\,$$ $$0$$
Explanation
(P) Let $$p(x)=a x^2+b x+c$$
Given, $$p(0)=0$$
$$\Rightarrow \quad c=0$$
Also given $$\int_0^1 f(x) d x=1$$
$$\begin{array}{lr} \Rightarrow & \int_0^1\left(a x^2+b x\right) d x=1 \\ \Rightarrow & {\left[\frac{a x^3}{3}+\frac{b x^2}{2}\right]_0^1=1} \\ \Rightarrow & \frac{a}{3}+\frac{b}{2}=1 \\ \Rightarrow & 2 a+3 b=6 \end{array}$$
Here, $$a$$ and $$b$$ are non negative integer
$$\therefore(a, b)=(3,0),(0,2)$$
Hence, possible equation of $$p(x)$$ are $$3 x^2$$ and $$2 x$$.
So, P Match with 2.
(Q) Given $$f(x)=\sin x^2+\cos x^2$$
Differentiate $$f(x)$$ w.r.t. $$x$$
$$\begin{aligned} & \Rightarrow f^{\prime}(x)=2 x \cdot \cos x^2-2 x \cdot \sin x^2 \\ & \Rightarrow f^{\prime}(x)=2 x\left(\cos x^2-\sin x^2\right) \end{aligned}$$
Apply $$f^{\prime}(x)=0$$
$$\begin{aligned} & \Rightarrow x=0, \tan x^2=1 \\ & \Rightarrow x=0, \pm \sqrt{\frac{\pi}{4}}, \pm \sqrt{\frac{5 \pi}{4}}, \pm \sqrt{\frac{9 \pi}{4}}, \pm \sqrt{\frac{13 \pi}{4}} \end{aligned}$$
$$\begin{aligned} & \text { Differentiate } f^{\prime}(x) \text { w.r.t. } x \\ & \Rightarrow f^{\prime \prime}(x)=2\left(\cos x^2-\sin x^2\right) \\ & +2 x\left(-2 x \sin x^2-2 x \cos x^2\right) \\ & \Rightarrow f^{\prime \prime}(x)=2\left(\cos x^2-\sin x^2\right) \\ & -4 x^2\left(\sin x^2+\cos x^2\right) \\ & \Rightarrow f^{\prime \prime}(x)<0 \text { at } x= \pm \sqrt{\frac{\pi}{4}}, \pm \sqrt{\frac{9 \pi}{4}} \\ \end{aligned}$$
So, $f(x)$ is maximum at four points. Hence, Q match with 3. (R) Let $$\mathrm{I}=\int_{-2}^2 \frac{3 x^2}{1+e^x} d x\quad \text{... (i)}$$
Apply the property $$\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$$
$$\begin{aligned} & \Rightarrow \quad \mathrm{I}=\int_{-2}^2 \frac{3(-x)^2}{1+e^{-x}} d x \\ & \Rightarrow \quad \mathrm{I}=\int_{-2}^2 \frac{3 x^2 e^x}{e^x+1} d x \quad \text{.... (ii)} \end{aligned}$$
Add equation (i) and (ii)
$$\begin{aligned} & \Rightarrow \quad 2 \mathrm{I}=\int_{-2}^2 \frac{3 x^2}{e^x+1}\left[1+e^x\right] d x \\ & \Rightarrow \quad \mathrm{I}=\frac{3}{2} \int_{-2}^2 x^2 \cdot d x \\ & \Rightarrow \quad \mathrm{I}=\frac{3}{2}\left[\frac{x^3}{3}\right]_{-2}^2 \\ & \Rightarrow \quad \mathrm{I}=16 \end{aligned}$$
(S) We know the property
$$\int_{-a}^a f(x) d x=\left\{\begin{array}{l} 2 \int_0^a f(x) d x, \text { when } f(x) \text { is } \\ \text { an even function } \\ 0, \text { when } f(x) \text { is an odd function } \end{array}\right.$$
$$\begin{aligned} & \text { Let } g(x)=\cos x \cdot \log \left(\frac{1+x}{1-x}\right) \\ & \Rightarrow g(-x)=\cos (-x) \log \left(\frac{1-x}{1+x}\right) \\ & \Rightarrow g(-x)=\cos x \cdot \log \left(\frac{1+x}{1-x}\right)^{-1} \\ & \Rightarrow g(-x)=-\cos x \cdot \log \left(\frac{1+x}{1-x}\right) \end{aligned}$$
$$\Rightarrow g(-x)=-g(x)$$
Hence, $$g(x)$$ is an odd function
So, $$\int_{\frac{-1}{2}}^{\frac{1}{2}} \cos x \cdot \log \left(\frac{1+x}{1-x}\right) d x=0$$
$$\Rightarrow \frac{\frac{\int_{-1}^2}{\frac{1}{2}} \cos x \cdot \log \left(\frac{1+x}{1-x}\right) d x}{\int_0^{\frac{1}{2}} \cos x \cdot \log \left(\frac{1+x}{1-x}\right) d x}=0$$
Hence, $$S$$ match with 4.
Hint:
(i) Recall the property
$$\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$$
(ii) Recall the property
$$ \int_{-a}^a f(x) d x=\left\{\begin{array}{l} 2 \int_0^a f(x) d x, \text { when } f(x) \text { is an even function}\\ 0, \text { when } f(x) \text { is an oden function } \end{array}\right.$$
(iii) At the point of local maxima, first derivative of the function is zero and second derivative of the function is negative.
Comments (0)
