JEE Advance - Mathematics (2014 - Paper 2 Offline - No. 1)
Explanation
Given, 3 boys and 2 girls stand in a queue.
Sample space $$n(s)=\left| \!{\underline {\, {5} \,}} \right.=120$$
According to the given condition, following cases may arise.
BGGBB $$\quad \left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.$$
GGBBB $$\quad \left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.$$
GBGBB $$\quad \left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.$$
GBBGB $$\quad \left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.$$
BGBGB $$\quad \left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.$$
So, number of favorable ways $$=5\left| \!{\underline {\, {3} \,}} \right. \left| \!{\underline {\, {2} \,}} \right.=60$$
Required probability $$=\frac{60}{120}=\frac{1}{2}$$
Comments (0)
