JEE Advance - Mathematics (2014 - Paper 1 Offline - No. 3)
Let $${n_1}\, < {n_2}\, < \,{n_3}\, < \,{n_4}\, < {n_5}$$ be positive integers such that $${n_1}\, + {n_2}\, + \,{n_3}\, + \,{n_4}\, + {n_5}$$ = 20. Then the number of such destinct arrangements $$\,({n_1}\,,\,{n_2},\,\,{n_3},\,\,{n_4}\,,{n_5})$$ is
Answer
7
Explanation
As, $n_1 \geq 1, n_2 \geq 2, n_3 \geq 3, n_4 \geq 4, n_5 \geq 5$
Let $n_1-1=x_1 \geq 0, n_2-2=x_2 \geq 0, \ldots$, $n_5-5=x_5 \geq 0$
$\Rightarrow$ New equation will be
$$ \begin{gathered} x_1+1+x_2+2+\ldots+x_5+5=20 \end{gathered} $$
$\begin{array}{r}\Rightarrow x_1+x_2+x_3+x_4+x_5 =20-15=5\end{array}$
Now, $ x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5$
So the cases can be listed giving -
$$ \begin{array}{c|c|c|c|c} \hline \boldsymbol{x}_{\boldsymbol{1}} & \boldsymbol{x}_{\mathbf{2}} & \boldsymbol{x}_{\mathbf{3}} & \boldsymbol{x}_{\mathbf{4}} & \boldsymbol{x}_{\mathbf{5}} \\ \hline 0 & 0 & 0 & 0 & 5 \\\hline 0 & 0 & 0 & 1 & 4 \\\hline 0 & 0 & 0 & 2 & 3 \\\hline 0 & 0 & 1 & 1 & 3 \\\hline 0 & 0 & 1 & 2 & 2 \\\hline 0 & 1 & 1 & 1 & 2 \\\hline 1 & 1 & 1 & 1 & 1 \\ \hline \end{array} $$
So there are 7 distinct arrangements.
Let $n_1-1=x_1 \geq 0, n_2-2=x_2 \geq 0, \ldots$, $n_5-5=x_5 \geq 0$
$\Rightarrow$ New equation will be
$$ \begin{gathered} x_1+1+x_2+2+\ldots+x_5+5=20 \end{gathered} $$
$\begin{array}{r}\Rightarrow x_1+x_2+x_3+x_4+x_5 =20-15=5\end{array}$
Now, $ x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5$
So the cases can be listed giving -
$$ \begin{array}{c|c|c|c|c} \hline \boldsymbol{x}_{\boldsymbol{1}} & \boldsymbol{x}_{\mathbf{2}} & \boldsymbol{x}_{\mathbf{3}} & \boldsymbol{x}_{\mathbf{4}} & \boldsymbol{x}_{\mathbf{5}} \\ \hline 0 & 0 & 0 & 0 & 5 \\\hline 0 & 0 & 0 & 1 & 4 \\\hline 0 & 0 & 0 & 2 & 3 \\\hline 0 & 0 & 1 & 1 & 3 \\\hline 0 & 0 & 1 & 2 & 2 \\\hline 0 & 1 & 1 & 1 & 2 \\\hline 1 & 1 & 1 & 1 & 1 \\ \hline \end{array} $$
So there are 7 distinct arrangements.
Comments (0)
