JEE Advance - Mathematics (2013 - Paper 2 Offline - No. 8)

Let $$f:\left[ {0,1} \right] \to R$$ (the set of all real numbers) be a function. Suppose the function $$f$$ is twice differentiable,
$$f(0) = f(1)=0$$ and satisfies $$f''\left( x \right) - 2f'\left( x \right) + f\left( x \right) \ge .{e^x},x \in \left[ {0,1} \right]$$.

Which of the following is true for $$0 < x < 1?$$

$$0 < f\left( x \right) < \infty $$
$$ - {1 \over 2} < f\left( x \right) < {1 \over 2}$$
$$ - {1 \over 4} < f\left( x \right) < 1$$
$$ - \infty < f\left( x \right) < 0$$

Explanation

Given, $$f(0)=f(1)=0$$

$$\begin{aligned} & \text { And } f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^x, x \in[0,1] \\ & \Rightarrow e^{-x} f^{\prime \prime}(x)-e^{-x} f^{\prime}(x)-e^{-x} f^{\prime}(x)+e^{-x} f(x) \geq 1 \\ & \Rightarrow\left(e^{-x} f^{\prime}(x)\right)^{\prime}-\left(e^{-x} f^{\prime}(x)\right)-\left(e^{-x} f(x)\right)^{\prime} \geq 1 \\ & \Rightarrow\left(e^{-x} f^{\prime}(x)-e^{-x} f(x)\right)^{\prime} \geq 1 \\ & \Rightarrow\left(e^{-x} f(x)\right)^{\prime \prime} \geq 1 \end{aligned}$$

Let $$g(x)=e^{-x} f(x)$$

Now, $$g(0)=e^{-0} f(0)=0$$ and $$g(1)=e^{-1} f(1)=0$$

Here, $$g^{\prime \prime}(x)=\left(e^{-x} f(x)\right)^{\prime \prime} \geq 1>0$$

$$\therefore$$ Concavity of $$g(x)$$ is up and $$g(0)=g(1)=0$$

JEE Advanced 2013 Paper 2 Offline Mathematics - Application of Derivatives Question 22 English Explanation

$$\begin{aligned} & \Rightarrow g(x)=e^{-x} f(x)<0 \forall x \in(0,1) \\ & \Rightarrow f(x)<0 \end{aligned}$$

Hints:

(i) $$f^{\prime \prime}(x)>0$$ implies the concavity of $$f(x)$$ is upward and $$f^{\prime \prime}(x)<0$$ implies the concavity of $$f(x)$$ is downward.

(ii) $$f^{\prime \prime}(x)>0 \quad \forall x \in(a, b)$$ and $$f(a)=f(b)=0$$ implies that the concavity of the function is upward and $$f(x)$$ lies below the $x$-axis in the interval $$x \in(a, b)$$

Comments (0)

Advertisement