JEE Advance - Mathematics (2013 - Paper 2 Offline - No. 19)

Let $$\omega$$ be a complex cube root of unity with $$\omega$$ $$\ne$$ 1 and P = [pij] be a n $$\times$$ n matrix with pij = $$\omega$$i + j. Then P2 $$\ne$$ 0, when n = ?
57
55
58
56

Explanation

The given matrix $ P = [p_{ij}] $ is an $ n \times n $ matrix where $ p_{ij} = \omega^{i + j} $ and $ \omega $ is a complex cube root of unity with $\omega \neq 1$. We need to determine when $ P^2 \neq 0 $.

For $ n = 1 $:

$ P = [p_{ij}]_{1 \times 1} = [\omega^2] $

$ \Rightarrow P^2 = [\omega^4] \neq 0 $

For $ n = 2 $:

$ P = [p_{ij}]_{2 \times 2} = \begin{bmatrix} \omega^2 & \omega^3 \\ \omega^3 & \omega^4 \end{bmatrix} = \begin{bmatrix} \omega^2 & 1 \\ 1 & \omega \end{bmatrix} $

$ P^2 = \begin{bmatrix} \omega^2 & 1 \\ 1 & \omega \end{bmatrix} \begin{bmatrix} \omega^2 & 1 \\ 1 & \omega \end{bmatrix} = \begin{bmatrix} \omega^4 + 1 & \omega^2 + \omega \\ \omega^2 + \omega & 1 + \omega^2 \end{bmatrix} \neq 0 $

For $ n = 3 $:

$ P = [p_{ij}]_{3 \times 3} = \begin{bmatrix} \omega^2 & \omega^3 & \omega^4 \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{bmatrix} = \begin{bmatrix} \omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{bmatrix} $

$ P^2 = \begin{bmatrix} \omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{bmatrix} \begin{bmatrix} \omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 $

Thus, $ P^2 = 0 $ when $ n $ is a multiple of 3. Therefore, $ P^2 \neq 0 $ when $ n $ is not a multiple of 3.

The possible values of $ n $ where $ P^2 \neq 0 $ are:

$ \Rightarrow n = 55, 58, 56 $

Comments (0)

Advertisement