JEE Advance - Mathematics (2013 - Paper 2 Offline - No. 12)
Explanation
Given, PQ be a focal chord of the parabola $$y^2=4 a x$$
Let $$\mathrm{P}=\left(a t^2, 2 a t\right)$$ and $$\mathrm{Q}\left(\frac{a}{t^2},-\frac{2 a}{t}\right)$$
Equation of tangent at P is $$t y=x+a t^2\quad \text{... (i)}$$
Equation of tangent at Q is $$-\frac{y}{t}=x+\frac{a}{t^2}\quad \text{... (ii)}$$
Let $$R$$ is the point of intersection of tangents at $$P$$ and $$Q$$.
On solving Equation (i) and (ii)
$$\Rightarrow \mathrm{R}=\left(-a, a\left(t-\frac{1}{t}\right)\right)$$
Given, the tangents of parabola $$y^2=4 a x$$ at P and $$Q$$ meet at a point lying on the line $$y=2 x +a$$.
$$\therefore \mathrm{R}$$ must be lies on the line $$y=2 x+a$$
$$\begin{aligned} & \Rightarrow \quad a\left(t-\frac{1}{t}\right)=-2 a+a \\ & \Rightarrow \quad t-\frac{1}{t}=-1 \quad \text{... (iii)} \end{aligned}$$
Let the length of chord PQ is L
$$\begin{aligned} & \Rightarrow \mathrm{L}=\sqrt{\left(a t^2-\frac{a}{t^2}\right)^2+\left(2 a t+\frac{2 a}{t}\right)^2} \\ & \Rightarrow \mathrm{L}=a \sqrt{\left(t-\frac{1}{t}\right)^2\left(t+\frac{1}{t}\right)^2+4\left(t+\frac{1}{t}\right)^2} \\ & \Rightarrow \mathrm{L}=a \sqrt{\left(t-\frac{1}{t}\right)^2\left(\left(t-\frac{1}{t}\right)^2+4\right)+4\left(\left(t-\frac{1}{t}\right)^2+4\right)} \\ & \Rightarrow \mathrm{L}=a \sqrt{1 \cdot(1+4)+4 \cdot(1+4)} \\ & \Rightarrow \mathrm{L}=5 a \end{aligned}$$
Hints:
If $$P Q$$ is a focal chord of parabola $$y^2=4 a x$$, then $$\mathrm{P}=\left(a t^2, 2 a t\right)$$ and $$\mathrm{Q}=\left(\frac{a}{t^2}, \frac{-2 a}{t}\right)$$
Comments (0)
