JEE Advance - Mathematics (2012 - Paper 2 Offline - No. 9)
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Which of the following is true?
Explanation
Given,
$$\begin{aligned} g(x) & =\int_1^x\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t \\ \text { and } f(x) & =(1-x)^2 \sin ^2 x+x^2 \\ \Rightarrow g(x) & =\int_1^x\left(\frac{2(t-1)}{t+1}-\ln t\right)\left((1-t)^2 \sin ^2 t+t^2\right) d t \end{aligned}$$
On differentiating the above equation w.r.t. $$x$$
$$\begin{aligned} & \Rightarrow g^{\prime}(x)=\left(\frac{2(x-1)}{x+1}-\ln x\right)\left((1-x)^2 \sin ^2 x+x^2\right) \\ & \Rightarrow g^{\prime}(x)=\left(2-\frac{4}{x+1}-\ln x\right)\left((1-x)^2 \sin ^2 x+x^2\right) \end{aligned}$$
Here $$(1-x)^2 \sin ^2 x+x^2>0$$ for all $$x \in \mathrm{R}$$
Now, draw the graph of $$y=2-\frac{4}{x+1}$$ and $$y=-\ln x$$
For $$x>0$$
$$\text { Add the graph of } y=-\ln x \text { and } y=2-\frac{4}{x+1}$$
$$\Rightarrow g^{\prime}(x)<0 \text { for } x \in(1, \infty)$$
Hence, $$g(x)$$ is decreasing function for $$x \in(1, \infty)$$
Comments (0)
