JEE Advance - Mathematics (2012 - Paper 2 Offline - No. 14)
Explanation
Given: $$a_1=5$$ and $$a_{20}=25$$
Also given, $$a_1, a_2, a_3, \ldots \ldots \ldots$$ are in H.P.
$$\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \ldots \ldots \ldots$$ are in A.P.
Let D be the common difference of above A. P.
$$\begin{array}{ll} \therefore & \frac{1}{a_{20}}=\frac{1}{a_1}+(20-1) d \\ \Rightarrow & \frac{1}{25}=\frac{1}{5}+19 d \\ \Rightarrow & d=\frac{-4}{475} \end{array}$$
$$\begin{aligned} & \text { Now, } \quad \frac{1}{a_n}=\frac{1}{a_1}+(n-1) d \\ & \Rightarrow \quad \frac{1}{a_n}=\frac{1}{5}+(n-1) \cdot\left(\frac{-4}{475}\right) \\ & \Rightarrow \quad \frac{1}{a_n}=\frac{95-4 n+4}{475} \\ & \Rightarrow \quad a_n=\frac{475}{99-4 n} \\ \end{aligned}$$
Apply $$\quad a_n<0$$
$$\Rightarrow \quad \frac{475}{99-4 n}<0$$
The least positive integral value of $$n$$ is 25 which satisfy the above condition.
Comments (0)
