JEE Advance - Mathematics (2012 - Paper 1 Offline - No. 7)

The ellipse $${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ is inscribed in a rectangle $$R$$ whose sides are parallel to the coordinate axes. Another ellipse $${E_2}$$ passing through the point $$(0, 4)$$ circumscribes the rectangle $$R$$. The eccentricity of the ellipse $${E_2}$$ is
$${{\sqrt 2 } \over 2}$$
$${{\sqrt 3 } \over 2}$$
$${{1 \over 2}}$$
$${{3 \over 4}}$$

Explanation

IIT-JEE 2012 Paper 1 Offline Mathematics - Ellipse Question 33 English Explanation

Let the equation of ellipse $$\mathrm{E}_2$$ is $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$.

Now, it is given that $$\mathrm{E}_2$$ passes through $$(0,4)$$

$$\begin{aligned} \Rightarrow \quad \frac{0^2}{a^2}+\frac{4^2}{b^2} & =1 \\ b^2 & =16 \end{aligned}$$

Also, $$\mathrm{E}_2$$ passes through $$( \pm 3, \pm 2)$$

$$\begin{aligned} & \Rightarrow \quad \frac{3^2}{a^2}+\frac{2^2}{b^2}=1 \\ & \Rightarrow \quad \frac{9}{a^2}+\frac{4}{16}=1 \\ & \Rightarrow \quad \frac{9}{a^2}=\frac{3}{4} \\ & \Rightarrow \quad a^2=12 \\ & \text { Now, } \quad b^2>a^2 \\ & \Rightarrow \quad b>a \\ & \therefore \quad a^2=b^2\left(1-e^2\right) \\ & \Rightarrow \quad 12=16\left(1-e^2\right) \\ & \Rightarrow \quad \frac{12}{16}=1-e^2 \\ & \Rightarrow \quad e^2=1-\frac{3}{4} \\ & \Rightarrow \quad e^2=\frac{1}{4} \\ & \Rightarrow \quad e=\frac{1}{2} \\ \end{aligned}$$

Comments (0)

Advertisement