JEE Advance - Mathematics (2012 - Paper 1 Offline - No. 2)
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = 9,$$ then $$\left| {2\overrightarrow a + 5\overrightarrow b + 5\overrightarrow c } \right|$$ is
Explanation
$$\begin{aligned} & \text { Given, }|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2=9 \\ & \Rightarrow|\vec{a}|^2+|\vec{b}|^2-2 \vec{a} \cdot \vec{b}+|\vec{b}|^2 \\ &|\vec{c}|^2-2 \vec{b} \cdot \vec{c}+|\vec{c}|^2+|\vec{a}|^2-2 \vec{c} \cdot \vec{a}=9 \\ & \Rightarrow 2\left(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\right)-2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=9 \\ & \Rightarrow 2(1+1+1)-2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=9 \\ & \Rightarrow(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=\frac{-3}{2} \quad \text{... (i)} \\ & \operatorname{Now},|\vec{a}+\vec{b}+\vec{c}|^2 \geq 0 \\ & \Rightarrow|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \geq 0 \\ & \Rightarrow 1+1+1+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \geq 0 \\ & \Rightarrow(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \geq \frac{-3}{2} \quad \text{... (ii)} \end{aligned}$$
From (i) and (ii), we get
$$\begin{array}{lr} \Rightarrow & (\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=\frac{-3}{2} \\ \Rightarrow & |\vec{a}+\vec{b}+\vec{c}|=0 \\ \Rightarrow & \vec{a}+\vec{b}+\vec{c}=0 \\ \Rightarrow & \vec{b}+\vec{c}=-\vec{a} \quad \text{.... (iii)} \end{array}$$
$$\begin{aligned} \therefore \quad|2 \vec{a}+5 \vec{b}+5 \vec{c}| & =|2 \vec{a}+5(\vec{b}+\vec{c})| \\ & =|2 \vec{a}+5(-\vec{a})| \quad[\text { [from (iii)] } \\ & =|-3 \vec{a}| \\ \begin{aligned} & =|3 \vec{a}| \\ & =3 \quad[\because \vec{a} \text { is unit vector }] \end{aligned} \end{aligned}$$
Comments (0)
