JEE Advance - Mathematics (2012 - Paper 1 Offline - No. 1)
Let z be a complex number such that the imaginary part of z is non-zero and $$a\, = \,{z^2} + \,z\, + 1$$ is real. Then a cannot take the value
- 1
$${1 \over 3}$$
$${1 \over 2}$$
$${3 \over 4}$$
Explanation
Given, $$\quad a=z^2+z+1$$
$$\Rightarrow z^2+z+1-a=0$$
Using Sridharacharya Rule
$$\begin{aligned} & \qquad z=\frac{-1 \pm \sqrt{1^2-4(1-a)}}{2} \\ & \Rightarrow \quad z=\frac{-1 \pm \sqrt{1-4+4 a}}{2} \\ & \Rightarrow \quad z=\frac{-1 \pm \sqrt{4 a-3}}{2} \end{aligned}$$
Now, we can observe that if $$\mathrm{a}=\frac{3}{4}$$, then $$z= \frac{-1}{2}$$ which will become purely real.
Hence, if $$a \neq \frac{3}{4}$$, otherwise $$z$$ will be purely real.
(i) Make quadratic equation in $$z$$ and apply Sridharacharya rule.
(ii) Analyse the value of '$$a$$' for which '$$z$$' becomes purely real.
Comments (0)
