JEE Advance - Mathematics (2011 - Paper 2 Offline - No. 3)
have one root in common is
$$ - \sqrt 2 $$
$$ - i\sqrt 3$$
$$i\sqrt 5 $$
$$\sqrt 2 $$
Explanation
The given equations are
$${x^2} + bx - 1 = 0$$
$${x^2} + x + b = 0$$ ....... (1)
Common root is $$(b - 1)x - 1 - b = 0$$.
$$ \Rightarrow x = {{b + 1} \over {b - 1}}$$
This value of x satisfies Eq. (1), we get
$${{{{(b + 1)}^2}} \over {{{(b - 1)}^2}}} + {{b + 1} \over {b - 1}} + b = 0$$
$$ \Rightarrow b = i\sqrt 3 ,\, - i\sqrt 3 ,\,0$$
Comments (0)
