JEE Advance - Mathematics (2011 - Paper 2 Offline - No. 16)

If $$f(x) = \left\{ {\matrix{ { - x - {\pi \over 2},} & {x \le - {\pi \over 2}} \cr { - \cos x} & { - {\pi \over 2} < x \le 0} \cr {x - 1} & {0 < x \le 1} \cr {\ln x} & {x > 1} \cr } } \right.$$, then
f(x) is continuous at x = $$-$$ $$\pi$$/2.
f(x) is not differentiable at x = 0.
f(x) is differentiable at x = 1.
f(x) is differentiable at x = $$-$$3/2.

Explanation

$$\mathop {\lim }\limits_{x \to {{{\pi ^ - }} \over 2}} f(x) = 0 = f( - \pi /2)$$

$$\mathop {\lim }\limits_{x \to {{{\pi ^ + }} \over 2}} f(x) = \cos \left( { - {\pi \over 2}} \right) = 0$$

$$f'(x) = \left\{ {\matrix{ { - 1,} & {x \le - \pi /2} \cr {\sin x,} & { - \pi /2 < x \le 0} \cr {1,} & {0 < x \le 1} \cr {1/x,} & {x > 1} \cr } } \right.$$

Clearly, f(x) is not differentiable at x = 0 as f'(0$$-$$) = 0 and f'(0+) = 1.

f(x) is differentiable at x = 1 as $$f'({1^{ - 1}}) = f'({1^ + }) = 1$$.

Comments (0)

Advertisement