JEE Advance - Mathematics (2011 - Paper 2 Offline - No. 14)
Let f(x) = x2 and g(x) = sin x for all x $$\in$$ R. Then the set of all x satisfying $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$, where $$(f \circ g)(x) = f(g(x))$$, is
$$ \pm \sqrt {n\pi } ,\,n \in \{ 0,1,2,....\} $$
$$ \pm \sqrt {n\pi } ,\,n \in \{ 1,2,....\} $$
$${\pi \over 2} + 2n\pi ,\,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
$$2n\pi ,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
Explanation
$$f(x) = {x^2}$$, $$g(x) = \sin x$$
$$(g \circ f)(x) = \sin {x^2}$$
$$g \circ (g \circ f)(x) = \sin (\sin {x^2})$$
$$(f \circ g \circ g \circ f)(x) = {(\sin (\sin {x^2}))^2}$$ ..... (i)
Again, $$(g \circ f)(x) = \sin {x^2}$$
$$(g \circ g \circ f)(x) = \sin (\sin {x^2})$$ ..... (ii)
Given, $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$
$$ \Rightarrow {(\sin (\sin {x^2}))^2} = \sin (\sin {x^2})$$
$$ \Rightarrow \sin (\sin {x^2})\{ \sin (\sin {x^2}) - 1\} = 0$$
$$ \Rightarrow \sin (\sin {x^2}) = 0$$ or $$\sin (\sin {x^2}) = 1$$
$$ \Rightarrow \sin {x^2} = 0$$ or $$\sin {x^2} = {\pi \over 2}$$
$$\therefore$$ $${x^2} = n\pi $$ (i.e. not possible as $$ - 1 \le \sin \theta \le 1$$)
$$x = \pm \sqrt {n\pi } $$
Comments (0)
