JEE Advance - Mathematics (2010 - Paper 1 Offline - No. 26)
The number of $A$ in $T_p$ such that $A$ is either symmetric or skew-symmetric or both, and $\operatorname{det}(\mathrm{A}) \operatorname{divisible}$ by $p$ is :
$(p-1)^2$
$2(p-1)$
$(p-1)^2+1$
$2 p-1$
Explanation
We must have $a^2-b^2=1 < p$
$$ (a+b)(a-b)=1 < p $$
Either $a-b=0$ or $a+b$ is a multiple of $p$ when $a=b$ number of matrices is $p$ and when $a+b$ $=$ multiple of $p$.
$$ \Rightarrow a, b \text { has } p-1 $$
$$ \begin{aligned} \text { Total number of matrices } & =p+p-1 \\\\ & =2 p-1 \end{aligned} $$
Comments (0)


