JEE Advance - Mathematics (2008 - Paper 2 Offline - No. 6)
Explanation
$$|\overrightarrow {OP} | = |\widehat a\cos t + \widehat b\sin t|$$
$$|\overrightarrow {OP} {|^2} = (\widehat a\cos t + \widehat b\sin t)\,.\,(\widehat a\cos t + \widehat b\sin t)$$
$$ = |\widehat a{|^2}{\cos ^2}t + 2\widehat a\,.\,\widehat b\cos t\sin t + |\widehat b{|^2}{\sin ^2}t$$
$$ = {\cos ^2}t + \widehat a\,.\,\widehat b\sin 2t + {\sin ^2}t$$
$$ = 1 + \widehat a\,.\,\widehat b\sin 2t$$
The greatest value of $$|\overrightarrow {OP} |$$ is reached when $$\sin 2t = 1$$
i.e., $$t = {\pi \over 4}$$
$$M = |\overrightarrow {OP} |$$ greatest $$ = \sqrt {1 + \widehat a\,.\,\widehat b} $$
The direction of $$\overrightarrow {OP} $$ is given by
$$\widehat u = {{\widehat a + \widehat b} \over {\sqrt 2 \,.\,{{|\widehat a + \widehat b|} \over {\sqrt 2 }}}} = {{\widehat a + \widehat b} \over {|\widehat a + \widehat b|}}$$
Comments (0)
