JEE Advance - Mathematics (2008 - Paper 2 Offline - No. 22)
Match the Statements/Expressions in Column I with the Statements/Expressions in Column II.
Column I | Column II | ||
---|---|---|---|
(A) | The minimum value of $${{{x^2} + 2x + 4} \over {x + 2}}$$ is | (P) | 0 |
(B) | Let A and B be 3 $$\times$$ 3 matrices of real numbers, where A is symmetric, B is skew-symmetric and (A + B) (A $$-$$ B) = (A $$-$$ B) (A + B). If (AB)$$^t$$ = ($$-1$$)$$^k$$ AB, where (AB)$$^t$$ is the transpose of the matrix AB, then the possible values of k are | (Q) | 1 |
(C) | Let $$a=\log_3\log_3 2$$. An integer k satisfying $$1 < {2^{( - k + 3 - a)}} < 2$$, must be less than | (R) | 2 |
(D) | If $$\sin \theta = \cos \varphi $$, then the possible values of $${1 \over \pi }\left( {\theta + \varphi - {\pi \over 2}} \right)$$ are | (S) | 3 |
Explanation
(A) Let $$y = {{{x^2} + 2x + 4} \over {x + 2}}$$
$${{dy} \over {dx}} = {{{x^2} + 4x} \over {{{(x + 2)}^2}}} = 0$$
$$x = 0, - 4$$
$${{{d^2}y} \over {d{x^2}}} = {8 \over {{{(x + 2)}^3}}}$$
At $$x = 0,{{{d^2}y} \over {d{x^2}}}$$ is true
$$\therefore$$ y is min. when $$x = 0$$
$$\therefore$$ $${y_{\min }} = 2$$
(A) - (iii)
(B) As A is symmetric and B is skew symmetric matrix
We should have
A$$^+$$ = A and B$$^+$$ = $$-$$B ...... (i)
Also given that
(A + B) (A $$-$$ B) = (A $$-$$ B) (A + B)
A$$^2$$ $$-$$ AB + BA $$-$$ B$$^2$$ = A$$^2$$ + AB $$-$$ AB $$-$$ B$$^2$$
2BA = 2AB or AB = BA ...... (ii)
Now, given that
(AB)$$^t$$ = ($$-$$1)$$^k$$AB
(BA)$$^t$$ = ($$-$$1)$$^k$$AB (Using equation (i))
$$\Rightarrow$$ K should be an odd no.
$$\therefore$$ B - (ii, iv)
(C) Given that,
$$a = {\log _3}{\log _3}2$$
$$ \Rightarrow {\log _3}2 = {3^a} \Rightarrow {{{1_x}} \over {{{\log }_2}^3}} = {3^a}$$
Or $${\log _2}^3 = {3^{ - a}}$$
$$3 = {2^{(3 - a)}}$$
Now, $$ < {2^{( - k + 3 - a)}} < 2 \Rightarrow 1 < {2^{ - 2}}.\,{2^{3 - a}} < 2$$
$$ \Rightarrow 1 < {2^{ - k}}\,.\,3 < 2$$ (using eq. (i))
$$ = {1 \over 3}\,.\, < {2^{ - k}} < {2 \over 3} \Rightarrow {3 \over 2} < {2^k} < 3$$
$$ \Rightarrow k = 1$$
$$\therefore$$ k is less than 2 and 3.
$$\therefore$$ (C) - (iii, iv)
(D) Given that,
$$\sin \theta = \cos \phi $$
$$\cos \left( {{\pi \over 2} - \theta } \right) = \cos \phi $$
$$ = {\pi \over 2} - \theta = 2n\pi \pm \phi ,n \in Z$$
$$ \Rightarrow \theta \pm \phi - {\pi \over 2} = - 2n\pi $$
$$ = {1 \over \pi }\left( {\theta \pm \phi - {\pi \over 2}} \right) = - 2n$$
$$\therefore$$ Here, possible value of $${1 \over \pi }\left( {\theta \pm \phi - {\pi \over 2}} \right)$$ are 0 and 2 for $$n = 0, - 1$$
$$\therefore$$ (D) - p, r
Comments (0)
