JEE Advance - Mathematics (2008 - Paper 2 Offline - No. 21)

Consider the lines given by:

$${L_1}:x + 3y - 5 = 0$$

$${L_2}:3x - ky - 1 = 0$$

$${L_3}:5x + 2y - 12 = 0$$

Match the Statement/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) L$$_1$$, L$$_2$$, L$$_3$$ are concurrent, if (P) $$K = - 9$$
(B) One of L$$_1$$, L$$_2$$, L$$_3$$ is parallel to atleast one of the other two, if (Q) $$K = - {6 \over 5}$$
(C) L$$_1$$, L$$_2$$, L$$_3$$ form a triangle, if (R) $$K = {5 \over 6}$$
(D) L$$_1$$, L$$_2$$, L$$_3$$ do not form a triangle, if (S) $$K = 5$$

A - iv; B - ii; C - iii; D - i, ii
A - iv; B - i, ii; C - iii; D - i, ii, iv
A - iv; B - i; C - iii; D - i, ii
A - ii; B - i, iii; C - iii; D - i, ii, iv

Explanation

We have,

(A)

$${L_1}:x + 3y - 5 = 0$$

$${L_2}:3x - ky - 1 = 0$$

$${L_3}:5x + 2y - 12 = 0$$

Point of intersection of L$$_1$$ and L$$_2$$ is (2, 1)

If lines are concurrent, then (2, 1) will satisfy L$$_2$$

$$\Rightarrow 3(2)-k(1)-1=0$$

$$k=5$$

(A) $$\to$$ (iv)

(B) If L$$_1$$ and L$$_2$$ are parallel

$${3 \over 1} = {{ - k} \over 3} \ne {{ - 1} \over { - 5}} \Rightarrow k - 9$$

If L$$_2$$ and L$$_3$$ are parallel

$${3 \over 5} = {{ - k} \over 2}$$

$$k = {{ - 6} \over 5}$$

(B) $$\to$$ (i, ii)

(C) As lines form a triangle, they cannot be concurrent and no two of them are parallel.

$$\Rightarrow k\ne5,-9,\frac{-6}{5}$$

$$\Rightarrow k=\frac{5}{6}$$

(C) $$\to$$ (iii)

(D) If the lines do not form a triangle then

$$k=5,-9,\frac{-6}{5}$$

(D) $$\to$$ (i, ii, iv)

Comments (0)

Advertisement