JEE Advance - Mathematics (2008 - Paper 1 Offline - No. 9)
such that $$f\left( x \right) = f\left( {1 - x} \right)$$ and $$f'\left( {{1 \over 4}} \right) = 0.$$ Then,
Explanation
$$f(x)$$ is a non constant twice differential function such that
$$f(x) = f(1 - x) \Rightarrow f'(x) = - f'(1 - x)$$ .... (i)
For $$x = {1 \over 2}$$
We get $$f'\left( {{1 \over 2}} \right) = - f'\left( {1 - {1 \over 2}} \right)$$
$$ = f'\left( {{1 \over 2}} \right) + f'\left( {{1 \over 2}} \right) = 0 \Rightarrow f'\left( {{1 \over 2}} \right) = 0$$
For $$x = {1 \over 4}$$, we get $$f'\left( {{1 \over 4}} \right) = - f'\left( {{3 \over 4}} \right)$$
But given that $$f'\left( {{1 \over 4}} \right) = 0:f'\left( {{1 \over 4}} \right) = f'\left( {{3 \over 4}} \right) = 0$$
Hence $$f'(x)$$ satisfies all conditions of roller's theorem for $$x \in \left[ {{1 \over 4},{1 \over 2}} \right]$$ and $$\left[ {{1 \over 2},{3 \over 4}} \right]$$, so there exist at least one point $${C_1} \in \left( {{1 \over 4},{1 \over 2}} \right)$$ and at least one point $${C_2} \in \left( {{1 \over 2},{3 \over 4}} \right)$$ such that
$$f''(G) = 0$$ and $$f''{(C)_2} = 0$$
$$\therefore$$ $$f''(x)$$ vanishes at least twice on [0, 1]
Also using $$f(x) = f(1 - x)$$
$$f\left( {x + {1 \over 2}} \right) = f\left( {1 - x - {1 \over 2}} \right) = f\left( { - x + {1 \over 2}} \right)$$
$$f'\left( {x + {1 \over 2}} \right)$$ is an odd function
$$ \Rightarrow \sin x\,f\left( {x + {1 \over x}} \right)$$ is an even function
$$\int\limits_{{{ - 1} \over 2}}^{{1 \over 2}} {f\left( {x + {1 \over x}} \right)\sin x\,dx = 0} $$
Comments (0)
