JEE Advance - Mathematics (2008 - Paper 1 Offline - No. 8)
If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$
$${{4\sqrt 2 } \over {{7^3}{3^2}}}$$
$$-{{4\sqrt 2 } \over {{7^3}{3^2}}}$$
$${{4\sqrt 2 } \over {{7^3}3}}$$
$$-{{4\sqrt 2 } \over {{7^3}3}}$$
Explanation
We have
$${y^3} - 3y + x = 0$$
Differentiate both sides we get
$$3{y^2}.y' - 3y' + 1 = 0$$ ..... (i)
Put $$y = 2\sqrt 2 ,x = - 10\sqrt 2 $$ then
$$y'( - 10\sqrt 2 ) = {{ - 1} \over {21}}$$
Differentiate eq. (i), we get
$$3{y^2}y'' + 6y{(y')^2} - 3y'' = 0$$
Put $$y = 2\sqrt 2 ,x = - 10\sqrt 2 ,y' = {{ - 1} \over {21}}$$ then
$$y''( - 10\sqrt 2 ) = {{ - 4\sqrt 2 } \over {{7^3}\,.\,{3^2}}}$$
Comments (0)
