JEE Advance - Mathematics (2008 - Paper 1 Offline - No. 6)
$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$
$$2g(-1)$$
$$0$$
$$-2g(1)$$
$$2g(1)$$
Explanation
$$y' = {1 \over {3[1 - f{{(x)}^2}]}}$$
Clearly $$f(x)$$ is an odd function then $$g'(x)$$ is an even function
So,
$$\int\limits_{ - 1}^1 {g'(x) = 2\int\limits_0^1 {g'(x)dx} } $$
$$ = 2[g(x)]_0^1 = 2[g(1) - g(0)]$$
$$ = 2g(1)$$
Comments (0)
