JEE Advance - Mathematics (2008 - Paper 1 Offline - No. 23)

Consider the system of equations:

$$x-2y+3z=-1$$

$$-x+y-2z=k$$

$$x-3y+4z=1$$

Statement - 1 : The system of equations has no solution for $$k\ne3$$.

and

Statement - 2 : The determinant $$\left| {\matrix{ 1 & 3 & { - 1} \cr { - 1} & { - 2} & k \cr 1 & 4 & 1 \cr } } \right| \ne 0$$, for $$k \ne 3$$.

Statement - 1 is True, Statement - 2 is True; Statement - 2 is a correct explanation for Statement - 1
Statement - 1 is True, Statement - 2 is True; Statement - 2 is NOT a correct explanation for Statement - 1
Statement - 1 is True, Statement - 2 is False
Statement - 1 is False, Statement - 2 is True

Explanation

The given equations are

$$x - 2y + 3z = - 1$$

$$ - x + y - 2z = k$$

$$x - 3y + 4z = 1$$

$$D = \left| {\matrix{ 1 & { - 2} & 3 \cr { - 1} & 1 & { - 2} \cr 1 & { - 3} & 4 \cr } } \right| = 0$$

$$D = \left| {\matrix{ 1 & { - 1} & 3 \cr { - 1} & k & { - 2} \cr 1 & 1 & 4 \cr } } \right| = k - 3 \ne 0$$

If $$k \ne 3$$, the system has no solutions.

Hence, Statement - 1 is True Statement - 2 is correct explanation for Statement - 1.

Comments (0)

Advertisement