JEE Advance - Mathematics (2008 - Paper 1 Offline - No. 15)
The equation of circle C is
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y + {1 \over 2})^2} = 1$$
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y + 1)^2} = 1$$
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
Explanation
Let centre of circle C be (h, k) then,
$$\left| {{{\sqrt 3 h + k - 6} \over {\sqrt {3 + 1} }}} \right| = 1$$
$$\sqrt 3 h + k - 6 = 2, - 2$$
$$\sqrt 3 h + k = 4$$ (rejecting 2 because origin and centre of point $$\left( {\sqrt 3 ,1} \right)$$, satisfies eq.)
eq. of circle (C) is
$${\left( {x - \sqrt 3 } \right)^2} + {(y - 1)^2} = 1$$
Clearly point E and F satisfy the equation in given option D.
As $${\left( {x - 2\sqrt 3 } \right)^2} + {(y - 1)^2} = 1$$ not possible.
Comments (0)
